Modulación del Inflamasoma por Leishmania

Alma Reyna Escalona-Montaño, Diana Estefanía Domínguez-Ríos, Rodolfo Antonio Mendiola-Mejía, María Magdalena Aguirre-García

Resumen

Las células presentadoras de antígeno, como los macrófagos y las células dendríticas, desencadenan vías de señalización que generan diversas moléculas efectoras importantes para la regulación de la respuesta inmune. En la leishmaniasis, el parásito Leishmania interrumpe diversas vías de señalización para manipular la respuesta inmune del hospedero con la finalidad de evitar ser eliminado y poder establecer una infección. Se ha descrito en muchos reportes que diferentes especies de Leishmania regulan dichas vías de señalización de manera diferencial. Por lo tanto, el objetivo del presente trabajo era hacer una revisión bibliográfica descriptiva para analizar cómo diferentes especies de Leishmania modulan la señalización del hospedero mamífero por la vía canónica y no canónica de la activación del inflamasoma. También se examina tanto el papel de la IL-1β y los polimorfismos del gen de IL-1β en la leishmaniasis como la manera en que algunos fármacos antileishmanicidas modulan el inflamasoma. Las bases de datos que se utilizaron para buscar artículos relevantes fueron Pubmed, Science Direct, y Clinical Key.

Texto completo:

PDF HTML EPUB

Referencias

Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019 Jul 6;20(13): 3328. 1-24. http://dx.doi.org/10.3390/ijms20133328

Kihel A, Hammi I, Darif D, Lemrani M, Riyad M, Guessous F, et al. The different faces of the NLRP3 inflammasome in cutaneous Leishmaniasis: A review. Cytokine. 2021 Nov; 147:155248. 1-6. http://dx.doi.org/10.1016/j.cyto.2020.155248

de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, et al. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun. 2019 Nov 21;10(1):5273. 1-17. http://dx.doi.org/10.1038/s41467-019-13356-2

Thorstenberg ML, Rangel Ferreira MV, Amorim N, Canetti C, Morrone FB, Alves Filho JC, et al. Purinergic Cooperation Between P2Y2 and P2X7 Receptors Promote Cutaneous Leishmaniasis Control: Involvement of Pannexin-1 and Leukotrienes. Front Immunol. 2018 Jul 9;9: 1531. 1-15. http://dx.doi.org/10.3389/fimmu.2018.01531

Gupta AK, Ghosh K, Palit S, Barua J, Das PK, Ukil A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2. FASEB J. 2017 Nov;31(11):5087-101. http://dx.doi.org/10.1096/fj.201700407R

da Costa LS, Outlioua A, Anginot A, Akarid K, Arnoult D. RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux. Cell Death Dis. 2019 Apr 25;10(5):346. 1-15. http://dx.doi.org/10.1038/s41419-019-1579-0

Platnich JM, Chung H, Lau A, Sandall CF, Bondzi-Simpson A, Chen HM, et al. Shiga Toxin/Lipopolysaccharide Activates Caspase-4 and Gasdermin D to Trigger Mitochondrial Reactive Oxygen Species Upstream of the NLRP3 Inflammasome. Cell Rep. 2018 Nov 6;25(6):1525-15336.e7. http://dx.doi.org/10.1016/j.celrep.2018.09.071

Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018 Sep 15;392(10151):951-970. http://dx.doi.org/10.1016/S0140-6736(18)31204-2

Rodríguez-Serrato MA, Salinas-Carmona MC, Limón-Flores AY. Immune response to Leishmania mexicana: the host-parasite relationship. Pathog Dis. 2020 Nov 11;78(8):ftaa060. 1-12. http://dx.doi.org/10.1093/femspd/ftaa060

Sanchez-Tejeda G, Rodríguez N, Parra C, Hernandez-Montes O, Barker DC, Monroy-Ostria A. Cutaneous leishmaniasis caused by members of Leishmania braziliensis complex in Nayarit, state of Mexico. Mem. Inst. Oswaldo Cruz. 2001 96, 15–19. https://doi.org/10.1590/S0074-02762001000100002.

Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012.7, e35671. 1-12. https://doi.org/10.1371/journal.pone.0035671.

Montalvo Alvarez AM, Nodarse JF, Goodridge IM, Fidalgo LM, Marin M, Van Der Auwera G, et al. Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using BccI for hsp70 PCR-RFLP. Trans R Soc Trop Med Hyg. 2010 May;104(5):364-7. https://doi.org/10.1016/j.trstmh.2009.12.002.

Wilkins-Rodríguez AA, Pérez-Torres A, Escalona-Montaño AR, Gutiérrez-Kobeh L. Differential Regulation of l-Arginine Metabolism through Arginase 1 during Infection with Leishmania mexicana Isolates Obtained from Patients with Localized and Diffuse Cutaneous Leishmaniasis. Infect Immun. 2020 Jun 22;88(7):e00963-19. http://dx.doi.org/10.1128/IAI.00963-19

Zamboni DS, Sacks DL. Inflammasomes and Leishmania: in good times or bad, in sickness or in health. Curr Opin Microbiol. 2019 Dec;52:70-6.http://dx.doi.org/10.1016/j.mib.2019.05.005

de Carvalho RVH, Zamboni DS. Inflammasome Activation in Response to Intracellular Protozoan Parasites. Trends Parasitol. 2020 May;36(5):459-72. http://dx.doi.org/10.1016/j.pt.2020.02.006

Saresella M, Basilico N, Marventano I, Perego F, La Rosa F, Piancone F, et al. Leishmania infantum infection reduces the amyloid β42-stimulated NLRP3 inflammasome activation. Brain Behav Immun. 2020 Aug;88:597-05. http://dx.doi.org/10.1016/j.bbi.2020.04.058

Stuart KD, Weeks R, Guilbride L, Myler PJ. Molecular organization of Leishmania RNA virus 1. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8596-600. http://dx.doi.org/ 10.1073/pnas.89.18.8596

Hartley MA, Eren RO, Rossi M, Prevel F, Castiglioni P, Isorce N, et al. Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β. Microb Cell. 2018 Jan 14;5(3):137-49. http://dx.doi.org/10.15698/mic2018.03.619

Lecoeur H, Prina E, Rosazza T, Kokou K, N'Diaye P, Aulner N, et al. Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-κB/NLRP3-Mediated Inflammatory Response. Cell Rep. 2020 Feb 11;30(6):1870-82.e4. http://dx.doi.org/10.1016/j.celrep.2020.01.030

Kamhawi S, Serafim TD. Leishmania: A Maestro in Epigenetic Manipulation of Macrophage Inflammasomes. Trends Parasitol. 2020 Jun;36(6):498-01. http://dx.doi.org/10.1016/j.pt.2020.04.008

Thorstenberg ML, Martins MDA, Figliuolo V, Silva CLM, Savio LEB, Coutinho-Silva R. P2Y2 Receptor Induces L. amazonensis Infection Control in a Mechanism Dependent on Caspase-1 Activation and IL-1β Secretion. Mediators Inflamm. 2020 Oct 1;2020:2545682. 1-11. http://dx.doi.org/10.1155/2020/2545682

Saha G, Khamar BM, Singh OP, Sundar S, Dubey VK. Leishmania donovani evades Caspase 1 dependent host defense mechanism during infection. Int J Biol Macromol. 2019 Apr 1;126:392-01. http://dx.doi.org/10.1016/j.ijbiomac.2018.12.185

Gupta G, Santana AKM, Gomes CM, Turatti A, Milanezi CM, Bueno Filho R, et al. Inflammasome gene expression is associated with immunopathology in human localized cutaneous leishmaniasis. Cell Immunol. 2019 Jul;341:103920. 1-8. http://dx.doi.org/10.1016/j.cellimm.2019.04.008

Moreira RB, Pirmez C, de Oliveira-Neto MP, Aguiar LS, Gonçalves AJS, Pereira LOR, et al. AIM2 inflammasome is associated with disease severity in tegumentary leishmaniasis caused by Leishmania (V.) braziliensis. Parasite Immunol. 2017 Jul;39(7). 1-23. http://dx.doi.org/ 10.1111/pim.12435.

Machado PR, Ampuero J, Guimarães LH, Villasboas L, Rocha AT, Schriefer A, et al. Miltefosine in the treatment of cutaneous leishmaniasis caused by Leishmania braziliensis in Brazil: a randomized and controlled trial. PLoS Negl Trop Dis. 2010 Dec 21;4(12):e912. 1-6. http://dx.doi.org/10.1371/journal.pntd.0000912.

Santos D, Campos TM, Saldanha M, Oliveira SC, Nascimento M, Zamboni DS, et al. IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. J Invest Dermatol. 2018 May;138(5):1107-15. http://dx.doi.org/doi:10.1016/j.jid.2017.11.029

Gurung P, Karki R, Vogel P, Watanabe M, Bix M, Lamkanfi M, et al. An NLRP3 inflammasome-triggered Th2-biased adaptive immune response promotes leishmaniasis. J Clin Invest. 2015 Mar 2;125(3):1329-38. http://dx.doi.org/doi: 10.1172/JCI79526.

Harrington V, Gurung P. Reconciling protective and pathogenic roles of the NLRP3 inflammasome in leishmaniasis. Immunol Rev. 2020 Sep;297(1):53-66. http://dx.doi.org/doi:10.1111/imr.12886

Gonzalez K, Calzada JE, Corbett CEP, Saldaña A, Laurenti MD. Involvement of the Inflammasome and Th17 Cells in Skin Lesions of Human Cutaneous Leishmaniasi27;2020:9278931. 1-10. http://dx.doi.org/10.1155/2020/9278931

Mendonça LSO, Santos JM, Kaneto CM, de Carvalho LD, Lima-Santos J, Augusto DG, et al. Characterization of serum cytokines and circulating microRNAs that are predicted to regulate inflammasome genes in cutaneous leishmaniasis patients. Exp Parasitol. 2020 Mar;210:107846. 1-10 http://dx.doi.org/0.1016/j.exppara.2020.107846

Dey R, Joshi AB, Oliveira F, Pereira L, Guimarães-Costa AB, Serafim TD, et al. Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-1β. Cell Host Microbe. 2018 Jan 10;23(1):134-143.e6. http://dx.doi.org/10.1016/j.chom.2017.12.002

Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys. 2019 Jul 30;670:4-14. http://dx.doi.org/10.1016/j.abb.2019.02.008

Downs KP, Nguyen H, Dorfleutner A, Stehlik C. An overview of the non-canonical inflammasome. Mol Aspects Med. 2020 Dec;76:100924. 1-13. http://dx.doi.org/10.1016/j.mam.2020.100924

Whitaker SM, Colmenares M, Pestana KG, McMahon-Pratt D. Leishmania pifanoi proteoglycolipid complex P8 induces macrophage cytokine production through Toll-like receptor 4. Infect Immun. 2008 May;76(5):2149-56. http://dx.doi.org/10.1128/IAI.01528-07.

Kuang S, Zheng J, Yang H, Li S, Duan S, Shen Y, et al. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10642-47. http://dx.doi.org/10.1073/pnas.1708194114

Rathkey JK, Benson BL, Chirieleison SM, Yang J, Xiao TS, Dubyak GR, et al. Live-cell visualization of gasdermin D-driven pyroptotic cell death. J Biol Chem. 2017 Sep 1;292(35):14649-58. http://dx.doi.org/10.1074/jbc.M117.797217

Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016 Aug 15;35(16):1766-78. http://dx.doi.org/10.15252/embj.201694696

Cunha LD, Silva ALN, Ribeiro JM, Mascarenhas DPA, Quirino GFS, Santos LL, et al. AIM2 Engages Active but Unprocessed Caspase-1 to Induce Noncanonical Activation of the NLRP3 Inflammasome. Cell Rep. 2017 Jul 25;20(4):794-05. http://dx.doi.org/10.1016/j.celrep.2017.06.086

de Carvalho RVH, Andrade WA, Lima-Junior DS, Dilucca M, de Oliveira CV, Wang K, et al. Leishmania Lipophosphoglycan Triggers Caspase-11 and the Non-canonical Activation of the NLRP3 Inflammasome. Cell Rep. 2019 Jan 8;26(2):429-37.e5. http://dx.doi.org/10.1016/j.celrep.2018.12.047

de Veer MJ, Curtis JM, Baldwin TM, DiDonato JA, Sexton A, McConville MJ, et al. MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur J Immunol. 2003 Oct;33(10):2822-31.

http://dx.doi.org/ doi.org/ 10.1002/eji.200324128

Becker I, Salaiza N, Aguirre M, Delgado J, Carrillo-Carrasco N, Kobeh LG, et al. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol Biochem Parasitol. 2003 Aug 31;130(2):65-74.

http://dx.doi.org/ 10.1016/s0166-6851(03)00160-9

de Carvalho RVH, Lima-Júnior DS, de Oliveira CV, Zamboni DS. Endosymbiotic RNA virus inhibits Leishmania-induced caspase-11 activation. iScience. 2020 Dec 29;24(1):102004. 1-17. http://dx.doi.org/10.1016/j.isci.2020.102004

Chaves MM, Sinflorio DA, Thorstenberg ML, Martins MDA, Moreira-Souza ACA, Rangel TP, et al. Non-canonical NLRP3 inflammasome activation and IL-1β signaling are necessary to L. amazonensis control mediated by P2X7 receptor and leukotriene B4. PLoS Pathog. 2019 Jun 24;15(6):e1007887. 1-21 http://dx.doi.org/10.1371/journal.ppat.1007887

Figliuolo VR, Chaves SP, Savio LEB, Thorstenberg MLP, Machado Salles É, Takiya CM, et al. The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signal. 2017 Jun;13(2):143-52. http://dx.doi.org/10.1007/s11302-016-9544-1

Patil T, More V, Rane D, Mukherjee A, Suresh R, Patidar A, et al. Pro-inflammatory cytokine Interleukin-1β (IL-1β) controls Leishmania infection. Cytokine. 2018 Dec;112:27-31. http://dx.doi.org/10.1016/j.cyto.2018.06.033

Fernández-Figueroa EA, Rangel-Escareño C, Espinosa-Mateos V, Carrillo-Sánchez K, Salaiza-Suazo N, Carrada-Figueroa G, et al. Disease severity in patients infected with Leishmania mexicana relates to IL-1β. PLoS Negl Trop Dis. 2012;6(5):e1533. 1-9. http://dx.doi.org/10.1371/journal.pntd.0001533

Kautz-Neu K, Kostka SL, Dinges S, Iwakura Y, Udey MC, von Stebut E. IL-1 signalling is dispensable for protective immunity in Leishmania-resistant mice. Exp Dermatol. 2011 Jan;20(1):76-8. http://dx.doi: 10.1111/j.1600-0625.2010.01172.x.

da Silva GAV, de Mesquita TGR, de Souza Encarnação HV, do Espírito Santo Junior J, da Costa Sabino K, de Aguiar Neres I, et al. A polymorphism in the IL1B gene (rs16944 T/C) is associated with cutaneous leishmaniasis caused by Leishmania guyanensis and plasma cytokine interleukin receptor antagonist. Cytokine. 2019 Nov;123:154788. 1-7. http://dx.doi: 10.1016/j.cyto.2019.154788.

Bharati K. Human genetic polymorphism and Leishmaniasis. Infect Genet Evol. 2022 Mar;98:105203. 1-12. http://dx.doi: 10.1016/j.meegid.2021.105203.

Robertson AAB. Inhibiting Inflammasomes with Small Molecules. Exp Suppl. 2018;108:343-400. http://dx.doi.org/10.1007/978-3-319-89390-7_15

Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol. 2019 Oct 25;10:2538. 1-10. http://dx.doi.org/10.3389/fimmu.2019.02538

Guegan H, Ory K, Belaz S, Jan A, Dion S, Legentil L, et al. In vitro and in vivo immunomodulatory properties of octyl-β-D-galactofuranoside during Leishmania donovani infection. Parasit Vectors. 2019 Dec 23;12(1):600. 1-16. http://dx.doi.org/10.1186/s13071-019-3858-0

Domeneghetti L, Demarchi IG, Caitano JZ, Pedroso RB, Silveira TGV, Lonardoni MVC. Calophyllum brasiliense Modulates the Immune Response and Promotes Leishmania amazonensis Intracellular Death. Mediators Inflamm. 2018 Feb 13;2018:6148351.1-10. http://dx.doi.org/10.1155/2018/6148351

André S, Rodrígues V, Pemberton S, Laforge M, Fortier Y, Cordeiro-da-Silva A, et al. Antileishmanial Drugs Modulate IL-12 Expression and Inflammasome Activation in Primary Human Cells. J Immunol. 2020 Apr 1;204(7):1869-80. http://dx.doi.org/10.4049/jimmunol.1900590

Iacano AJ, Lewis H, Hazen JE, Andro H, Smith JD, Gulshan K. Miltefosine increases macrophage cholesterol release and inhibits NLRP3-inflammasome assembly and IL-1β release. Sci Rep. 2019 Jul 31;9(1):11128. 1-12. http://dx.doi.org/10.1038/s41598-019-47610-w

Enlaces refback

  • No hay ningún enlace refback.