Diabesity among the Yucatecan Maya. Metabolism, genotype, phenotype and considerations of the sociocultural environment and early development.

Julio Lara-Riegos, Hugo S. Azcorra-Pérez


Diabetes and obesity are diseases of relevance in the epidemiological context of Yucatan. The high coexistence and complex interaction between these pathologies have generated an initial characterization of the phenomenon called diabesity, however, it is necessary to resort to comprehensive theoretical frameworks that contribute to the understanding of this phenomenon. Diabesity is particularly relevant in the native population of Mexico. Taking the Maya from Yucatan as a case study, we propose that an ecological perspective of diabesity allows for the identification of the presence of factors at different scales of analysis that help to understand the phenomenon. In this article, we aim to analyze the phenomenon of diabesity in the context of the Yucatecan Maya population, given the demographic importance of this ethnic group in the country and due to the high prevalence of diabetes and obesity. In this descriptive review, we first describe the phenotypic and genotypic traits associated with diabesity; we then discuss the role of the sociocultural factors that have impacted the dietary pattern of the Maya and the available evidence regarding the phenotypic characteristics acquired during the early stages of development and their possible repercussions on metabolism and the presence of obesity and diabetes. Finally, we propose that the failure of insulin secretion and glucolipotoxicity are common factors and a possible unifying factor of diabesity among the Maya. For this purpose, we resort to primary sources of information, including original research articles and chapters from edited books about diabesity and socio-historical essays on the Maya population.


Glovaci D, Fan W, Wong ND. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr Cardiol Rep. 2019 Mar 4;21(4):21. doi: 10.1007/s11886-019-1107-y.

Cid-Soto MA, Martínez-Hernández A, García-Ortíz H, Córdova EJ, Barajas-Olmos F, Centeno-Cruz F, et al. Gene variants in AKT1, GCKR and SOCS3 are differentially associated with metabolic traits in Mexican Amerindians and Mestizos. Gene. 2018 Dec 30;679:160-171. doi: 10.1016/j.gene.2018.08.076. Epub 2018 Aug

Ng ACT, Delgado V, Borlaug BA, Bax JJ. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021 Apr;18(4):291-304. doi: 10.1038/s41569-020-00465-5. Epub 2020 Nov 13.

Wondmkun YT. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab Syndr Obes. 2020 Oct 9;13:3611-3616. doi: 10.2147/DMSO.S275898.

Wells JCK. The diabesity epidemic in the light of evolution: insights from the capacity-load model. Diabetologia. 2019 Oct;62(10):1740-1750. doi: 10.1007/s00125-019-4944-8.

Lara-Riegos JC, Ortiz-López MG, Peña-Espinoza BI, Montúfar-Robles I, Peña-Rico MA, Sánchez-pozos K, et al. Diabetes susceptibility in Mayas: evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes. Gene. 2015 Jul 1;565(1):68-75. doi: 10.1016/j.gene.2015.03.065. Epub 2015 Mar 31.

Domínguez-Cruz MG, Muñoz ML, Totomoch-Serra A, García-Escalante MG, Burgueño J, Valadez-González N, et al. Pilot genome-wide association study identifying novel risk loci for type 2 diabetes in a Maya population. Gene. 2018 Nov 30;677:324-331. doi: 10.1016/j.gene.2018.08.041.

Sánchez-Pozos K, Ortíz-López MG, Peña-Espinoza BI, Granados-Silvestre M, Jiménez-Jacinto V, Verleyen J, et al. Whole-exome sequencing in maya indigenous families: variant in PPP1R3A is associated with type 2 diabetes. Mol Genet Genomics. 2018 Oct;293(5):1205-1216. doi: 10.1007/s00438-018-1453-2.

González-Herrera L, Zavala-Castro J, Ayala-Cáceres C, Pérez-Mendoza G, López-González MJ, Pinto-Escalante D, et al. Genetic variation of FTO: rs1421085 T>C, rs8057044 G>A, rs9939609 T>A, and copy number (CNV) in Mexican Mayan school-aged children with obesity/overweight and with normal weight. Am J Hum Biol. 2019 Jan;31(1):e23192. doi: 10.1002/ajhb.23192. Epub 2018 Dec 10.

Azcorra H, Bogin B, Varela-Silva I, Dickinson F. The urban Maya from Yucatan; dealing with the biological burden of the past and a degenerative present. In: Azcorra H, Dickinson F (editores). Culture, environment and health in the Yucatan Peninsula. A human ecology perspective. 2020. Springer.

Loria A, Arroyo P, Fernandez V, Pardio J, Laviada H. Prevalence of obesity and diabetes in the socioeconomic transition of rural Mayas of Yucatan from 1962 to 2000. Ethnicity & Health. 2020 Jul;25(5):679-685. doi: 10.1080/13557858.2018.1442560. Epub 2018 Feb 20.

INEGI. Censo de Población y Vivienda 2020. 2021. Aguascalientes: Instituto Nacional de Estadística, Geografía e Informática. Available at: https://www.inegi.org.mx/programas/ccpv/2020/)

Barquera R, Hernández-Zaragoza DI, Bravo-Acevedo A, Arrieta-Bolaños E, Clayton S, Acuña-Alonzo V, et al. The immunogenetic diversity of the HLA system in Mexico correlates with underlying population genetic structure. Hum Immunol. 2020 Sep;81(9):461-474. doi: 10.1016/j.humimm.2020.06.008. Epub 2020 Jul 8.

Farriss N. Maya society under colonial rule: The collective enterprise of survival. Princeton: Princeton University Press; 1984.

Bracamonte P. Una deuda histórica. Ensayo sobre las causas de pobreza secular de los mayas yucatecos. Centro de Investigaciones y de Estudios Superiores en Antropología Social: Miguel Ángel Porrúa; 2007.

Ramírez-Carrillo, LA. The Thin Broken Line, History, Society, and the Environment on the Yucatan Peninsula. In: Azcorra H, Dickinson F (editores). Culture, environment and health in the Yucatan Peninsula. A human ecology perspective. 2020. Springer.

Villagrán M, Petermann-Rocha F, Mardones L, Garrido-Méndez A, Martorell M, Ulloa N, et al. Asociación entre el polimorfismo rs9939609 del gen FTO con la ingesta energética, macronutrientes y consumo de alcohol en población chilena [Association of the FTO (rs9939609) genotype with energy intake]. Rev Med Chil. 2018 Nov;146(11):1252-1260. Spanish. doi: 10.4067/S0034-98872018001101252.

Mehrdad M, Doaei S, Gholamalizadeh M, Eftekhari MH. The association between FTO genotype with macronutrients and calorie intake in overweight adults. Lipids Health Dis. 2020 Aug 26;19(1):197. doi: 10.1186/s12944-020-01372-x.

Magno FCCM, Guaraná HC, Fonseca ACP, Cabello GMK, Carneiro JRI, Pedrosa AP, Ximenes AC, Rosado EL. Influence of FTO rs9939609 polymorphism on appetite, ghrelin, leptin, IL6, TNFα levels, and food intake of women with morbid obesity. Diabetes Metab Syndr Obes. 2018 May 14;11:199-207. doi: 10.2147/DMSO.S154978.

Jia H, Yue X, Lazartigues E. ACE2 mouse models: a toolbox for cardiovascular and pulmonary research. Nat Commun. 2020 Oct 14;11(1):5165. doi: 10.1038/s41467-020-18880-0.

Bonàs-Guarch S, Guindo-Martínez M, Miguel-Escalada I, Grarup N, Sebastian D, Rodriguez-Fos E, et al. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nat Commun. 2018 Jan 22;9(1):321. doi: 10.1038/s41467-017-02380-9. Erratum in: Nat Commun. 2018 May 30;9(1):2162.

Vidal EA, Moyano TC, Bustos BI, Pérez-Palma E, Moraga C, Riveras E, et al. Whole Genome Sequence, Variant Discovery and Annotation in Mapuche-Huilliche Native South Americans. Sci Rep. 2019 Feb 14;9(1):2132. doi: 10.1038/s41598-019-39391-z.

Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep. 2018 Aug 17;18(10):80. doi: 10.1007/s11892-018-1049-6.

Kong Y, Sharma RB, Ly S, Stamateris RE, Jesdale WM, Alonso LC. CDKN2A/B T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes. 2018 May;67(5):872-884. doi: 10.2337/db17-1055. Epub 2018 Feb 6.

Roitberg GE, Dorosh ZhV, Sharkhun OO. A new method for screening diagnosis of insulin resistance. Bull Exp Biol Med. 2015 Jan;158(3):397-400. doi: 10.1007/s10517-015-2771-6. Epub 2015 Jan 9.

Lara-Riegos Julio, Ramírez-Camacho Mario, Torres-Romero Julio, Arana-Argáez Víctor, Cervera-Cetina Antonio. Índice metabólico en mayas: asociación con hipercolesterolemia en pacientes con diabetes tipo 2. Acta Bioquím Clín Latinoam. 2018; 52:195-203. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572018000200004&lng=es

Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018 Oct 1;98(4):2133-2223. doi: 10.1152/physrev.00063.2017.

De Meyts P. The diabetogenes concept of NIDDM. Adv Exp Med Biol. 1993;334:89-100. doi: 10.1007/978-1-4615-2910-1_7. PMID: 8249698.

Yuzbashian E, Asghari G, Chan CB, Hedayati M, Safarian M, Zarkesh M, et al. The association of dietary and plasma fatty acid composition with FTO gene expression in human visceral and subcutaneous adipose tissues. Eur J Nutr. 2021 Aug;60(5):2485-2494. doi: 10.1007/s00394-020-02422-x. Epub 2020 Nov 6.

Vincent V, Thakkar H, Aggarwal S, Mridha AR, Ramakrishnan L, Singh A. ATP-binding cassette transporter A1 (ABCA1) expression in adipose tissue and its modulation with insulin resistance in obesity. Diabetes Metab Syndr Obes. 2019 Feb 25;12:275-284. doi: 10.2147/DMSO.S186565. Erratum in: Diabetes Metab Syndr Obes. 2019 Dec 11;12:2633.

Ochoa-Guzmán A, Moreno-Macías H, Guillén-Quintero D, Chávez-Talavera O, Ordoñez-Sánchez ML, Segura-Kato Y, et al. R230C but not - 565C/T variant of the ABCA1 gene is associated with type 2 diabetes in Mexicans through an effect on lowering HDL-cholesterol levels. J Endocrinol Invest. 2020 Aug;43(8):1061-1071. doi: 10.1007/s40618-020-01187-8. Epub 2020 Feb 3.

Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015 Feb 12;518(7538):187-196. doi: 10.1038/nature14132. PMID: 25673412

Villalobos-Comparán M, Antuna-Puente B, Villarreal-Molina MT, Canizales-Quinteros S, Velázquez-Cruz R, León-Mimila P, et al. Interaction between FTO rs9939609 and the Native American-origin ABCA1 rs9282541 affects BMI in the admixed Mexican population. BMC Med Genet. 2017 May 2;18(1):46. doi: 10.1186/s12881-017-0410-y.

Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front Endocrinol (Lausanne). 2018 Jul 16; 9:384. doi: 10.3389/fendo.2018.00384.

Farriss N. Maya society under colonial rule: The collective enterprise of survival. Princeton: Princeton University Press; 1984.

Peniche Moreno P. Tiempos aciagos. Las calamidades y el cambio social del siglo XVIII entre los mayas de Yucatán. México, D. F.: Centro de Investigaciones y Estudios Superiores en Antropología Social - Miguel Ángel Porrúa; 2010.

Ransom-Carty M. Henequén, leyenda, historia y cultura. Mérida, México: Instituto de Cultura de Yucatán; 2006.

Bracamonte y Sosa, P. Amos y sirvientes. Las haciendas de Yucatán, 1789-1860. Mérida, México: Universidad Autónoma de Yucatán; 1993.

Ramírez Carrillo LA. The thin broken line. History, society and the environment on the Yucatan Peninsula. In: Azcorra H, Dickinson F, editors. Culture, environment and health in the Yucatan Peninsula. A human ecology perspective. Springer. In press; 2019.

Be Ramírez, PA. Vivir en el paraíso: escenarios de contienda entre la segunda generación de migrantes yucatecos en Cancún, Quintana Roo. Revista Española de Antropología Americana. 2019; 49: 109-125. https://doi.org/10.5209/reaa.66523

Gurri FD. Agricultural transformation and ontogeny in rural populations from the Yucatan Peninsula at the turn of the Century: Studying linear enamel hypoplasias and body composition in adolescents. In: Azcorra H, Dickinson F (editors). Culture, environment and health in the Yucatan Peninsula. A human ecology perspective. Switzerland AG, Springer; 2020. P.137-157.

Leatherman TL, Goodman AH, Stillman JT. A Critical Biocultural Perspective on Tourism and the Nutrition Transition in the Yucatan. In: Azcorra H, Dickinson F (editores). Culture, environment and health in the Yucatan Peninsula. A human ecology perspective. 2020. Springer.

Bogin B, Dickinson F, Azcorra H, Jiménez-Balam D, Richardson S, Castillo-Burguete T, et al. Nutritional Ecology. In: Callan H, (editor). The International Encyclopedia of Anthropology, Wiley Blackwell; 2018. doi: 10.1002/9781118924396

Veile, A., Christopher, L., Azcorra, H., Dickinson, F., Kramer, K., & Varela-Silva, I. (2022). Differences in nutritional status between rural and urban Yucatec Maya children: The importance of early life conditions. American Journal of Biological Anthropology, 178( 2), 205– 222.

Hoffman DJ, Powell TL, Barrett ES, Hardy DB. Developmental origins of metabolic diseases. Physiol Rev. 2021 Jul 1;101(3):739-795. doi: 10.1152/physrev.00002.2020.

Langley-Evans SC. Nutritional programming of disease: unravelling the mechanism. J Anat. 2009 Jul; 215(1):36-51. doi: 10.1111/j.1469-7580.2008.00977.x.

Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003 Jan 9; 348(2):101-8. doi: 10.1056/NEJMoa020549.

Spencer J, Wang Z, Hoy W. Low birth weight and reduced renal volume in Aboriginal children. Am J Kidney Dis. 200; 37:915-920

Calzada L, Morales A, Sosa-Larios TC, Reyes-Castro LA, Rodríguez-González GL, Rodríguez-Mata V, Zambrano E, Morimoto S. Maternal protein restriction during gestation impairs female offspring pancreas development in the rat. Nutr Res. 2016 Aug; 36(8):855-62. doi: 10.1016/j.nutres.2016.03.007.

Langley-Evans SC. Nutritional programming of disease: unravelling the mechanism. J Anat. 2009 Jul;215(1):36-51. doi: 10.1111/j.1469-7580.2008.00977.x.

Sinclair KD, Allegrucci C, Singh R, et al. (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined

by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 104, 19351–19356.

Dior UP, Karavani G, Bursztyn M, Paltiel O, Calderon-Margalit R, Friedlander Y, Youssim I, Manor O, Hochner H. Birth Weight and Maternal Body Size as Determinants of Blood Pressure at Age 17: Results from the Jerusalem Perinatal Study Cohort. Matern Child Health J. 2021 Jan;25(1):162-171. doi: 10.1007/s10995-020-03096-x.

Al Salmi I, Hannawi S. Birthweight and Lipids in Adult Life: Population-Based Cross Sectional Study. Lipids. 2020 Jul;55(4):365-374. doi: 10.1002/lipd.12242.

Zanetti D, Tikkanen E, Gustafsson S, Priest JR, Burgess S, Ingelsson E. Birthweight, Type 2 Diabetes Mellitus, and Cardiovascular Disease: Addressing the Barker Hypothesis With Mendelian Randomization. Circ Genom Precis Med. 2018 Jun;11(6):e002054. doi: 10.1161/CIRCGEN.117.002054.

Azcorra H, Vázquez-Vazquez A, Mendez N, Salazar JC, Mendez N, Datta-Banik S. Maternal Maya ancestry and birth weight in Yucatan, Mexico. American Journal of Human Biology 2016 28(3):436-439.

Azcorra H, Mendez N. The influence of maternal height on offspring's birth weight in Merida, Mexico. Am J Hum Biol. 2018 Nov;30(6):e23162. doi: 10.1002/ajhb.23162. Epub 2018 Sep 24.

Azcorra H, Varela-Silva MI, Dickinson F. Birth weight and body composition in 6-to-8 years old Maya children. Am J Hum Biol. 2021 Nov;33(6):e23542. doi: 10.1002/ajhb.23542. Epub 2020 Nov 30.

Chidumwa G, Said-Mohamed R, Nyati LH, Mpondo F, Chikowore T, Prioreschi A, Kagura J, Ware LJ, Micklesfield LK, Norris SA. Stunting in infancy, pubertal trajectories and adult body composition: the Birth to Twenty Plus cohort, South Africa. Eur J Clin Nutr. 2021 Jan;75(1):189-197. doi: 10.1038/s41430-020-00716-1.

Wells JCK. Body composition of children with moderate and severe undernutrition and after treatment: a narrative review. BMC Med. 2019 Nov 25;17(1):215. doi: 10.1186/s12916-019-1465-8.

Wells JCK. The diabesity epidemic in the light of evolution: insights from the capacity-load model. Diabetologia. 2019 Oct;62(10):1740-1750. doi: 10.1007/s00125-019-4944-8. Epub 2019 Aug 27. PMID: 31451870; PMCID: PMC6731192.

Azcorra H, Dickinson F, Datta Banik S. Maternal height and its relationship to offspring birth weight and adiposity in 6- to 10-year-old Maya children from poor neighbourhoods in Merida, Yucatan. American Journal of Physical Anthropology. 2016;161:571-571. doi.org/10.1002/ajpa.23057

Kullmann S, Kleinridders A, Small DM, Fritsche A, Häring HU, Preissl H, et al. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol. 2020 Jun;8(6):524-534. doi: 10.1016/S2213-8587(20)30113-3.

Holman RR, Clark A, Rorsman P. β-cell secretory dysfunction: a key cause of type 2 diabetes. Lancet Diabetes Endocrinol. 2020 May;8(5):370. doi: 10.1016/S2213-8587(20)30119-4.

Oakie A, Zhou L, Rivers S, Cheung C, Li J, Wang R. Postnatal knockout of beta cell insulin receptor impaired insulin secretion in male mice exposed to high-fat diet stress. Mol Cell Endocrinol. 2020 Jan 1;499:110588. doi: 10.1016/j.mce.2019.110588. Epub 2019 Sep 18.

Abate N, Chandalia M. The impact of ethnicity on type 2 diabetes. J Diabetes Complications. 2003 Jan-Feb;17(1):39-58. doi: 10.1016/s1056-8727(02)00190-3

Enlaces refback

  • No hay ningún enlace refback.