Chagas disease / COVID-19 comorbidity. An advantage to chagasic patients?

Néstor Oswaldo Anez, Gladys Crisante, Siham Salmen, Cesar Paredes, Henry Parada


Introduction. Chagas’s disease a neglected and debilitating tropical illness, caused by Trypanosoma cruzi-infection, afflicts millions of people in most Latin-American countries. In the same region, frequent and severe viral infection cases have been reported due to SARS-CoV-2, the causative agent of  COVID-19, deemed as the worst global pandemic in the 21st century.

Objective. To investigate the Chagas disease-COVID-19-relationship, and the comorbidity effect on chagasic patients living in communities where SARS-CoV-2 have circulated during the last two years causing severe cases and deaths.

Material and methods. Randomly selected chagasic patients (N=50) from rural localities of western Venezuela, where COVID-19 has occurred, were evaluated in order to know whether they had suffered SARS-CoV-2- infection. COVID-infected chagasic patients were clinically compared with non-chagasic individuals (N=22) who had suffered the viruses in the same localities.

Results. SARS-CoV-2-infection caused significantly less aggressive effects in chagasic patients than in non-chagasic patients, evidenced by the short-lasting scarce mild symptoms and the attenuated clinical profile (p<0.05), without further complications. Comparison revealed   COVID-19 detection in 10% of chagasic patients, showing all of them mild clinical pattern and few symptoms, while non-chagasic COVID-infected control individuals, showed 45% and 13% severe and fatal cases, respectively.

Conclusion. Chagasic patients suffering from COVID-19 comorbidity seem to express a robust immune response (Th1/Th2/Th17), which associated with anti-T. cruzi-glycoproteins circulating antibodies, directed to certain SARS-CoV-2glycoproteins (membrane/spike), may induce a short lasting and milder clinical profile. More investigations in populations where Chagas disease is endemic, is recommended. 



Añez N, Crisante G. The tissue specific tropism in Trypanosoma cruzi. Is it true? Acta Tropica. 2021; 213:105736.

Zeigler C, Allon S, Nyquist S, Shalek A, Ordovas-Montanes J. et al. SARS-CoV-2 Receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020; 181:1016–35.

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease in China. N Engl J Med. 2020; 382:1708–20. doi:10.1056/NEJMoa2002032.

Holshue M L, DeBolt C, Lindquist S, Lofy K H, Wiesman J, Bruce H, et al. Washington State 2019-nCoV Case Investigation Team First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020; 382:929–936.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet. 2020; 395:497–506.

Wölfel R, Corman V M, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; doi: 10.1038/s41586-020-2196-x.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:

Dhama K, Khan AS, Tiwari R, Sircar S, Sudipta-Bhat YSM, Singh KP, et al. Coronavirus Disease 2019– COVID-19. Clin Microbiol Rev. 2020; 33: e00028-20.

Vargas-Gandica J, Winter D, Schnipper R, Rodriguez-Morales A, Mondragon J. et al. Ageusia and anosmia, a common sign of COVID-19? A case series from four countries. J Neurovirol. 2020; 26:785–789.

Willis SJ, Eberhardt K, Randall L, De Maria A, Brown C, Madoff L, et al. The evolving nature of syndromic surveillance during the COVID-19 pandemic in Massachusetts. Abstracts OFI., 2021; 8 (suppl.1). S695.

Zaidel EJ, Forsyth CJ, Novick G, Marcus R, Ribeiro ALP, Pinazo MJ, et al. COVID-19: Implications for people with Chagas disease. Glob Heart. 2020; 15:69. doi: 10.5334/gh.891.

Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; 116:1666–87. doi: 10.1093/cvr/cvaa106.

Añez N, Carrasco H, Parada H, Crisante G, Rojas A, Gonzalez N, et al. Acute Chagas’ disease in Western Venezuela. A clinical, sero-parasitological and epidemiological study. Am J Trop Med Hyg. 1999; 60(2): 215-22.

Añez N, Crisante G, Rojas A, Carrasco H, Parada H, Yépez Y, et al. Detection and significance of inapparent infection in Chagas disease in Western Venezuela. Am J Trop Med Hyg. 2001; 65(3):227-32).

Añez N, Crisante G, Rojas A. Update on Chagas´ disease in Venezuela. Mem Inst Oswaldo Cruz. 2004; 99 (8): 781-7.

Añez N, Romero M, Crisante G, Bianchi G, Parada H. Valoración comparativa de pruebas sero diagnósticas utilizadas para detectar enfermedad de Chagas en Venezuela. Bol Mal Sal Amb.2010; 50(1):17-27.

Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020; 215:108427.

Walpole R E, Myers R H, Myers S L, Ye K. Probabilidad y estadística para ingeniería y ciencias (No. TA340. P76. 2007). México: Pearson education.

Añez N, Crisante G, Rojas A, Dávila D. Brote de enfermedad de Chagas agudo de posible transmisión oral en Mérida, Venezuela. Bol Mal Sal Amb. 2013; 53(1):1-11.

Añez N, Crisante G, Rojas A, Segnini S, Espinoza-Álvarez O, Teixeira MMG. Update on Chagas disease in Venezuela during the period 2003-2018. A Review. Acta Tropica. 2020; 203 105310.,2019105310.

Diaz-Hernández A, González-Vázquez MC, Arce-Fonseca M, Rodriguez-Morales O, Cedillo-Ramírez ML, Carabarin-Lima A. Risk of COVID-19 in Chagas Disease Patients: What Happens with Cardiac Affectations? Biology (Basel). 2021; 10(5):411. doi: 10.3390/biology10050411. PMID: 34066383; PMCID: PMC8148128.

Molina I, Marcolino M, Pires M, Ramos L, Silva, RT, Guimarães MH, et al. Chagas disease and SARS-CoV-2 coinfection does not lead to worse in-hospital outcomes: results from the Brazilian COVID-19 Registry. Med Rxiv preprint.2021;

Amezcua-Vesely MC, Rodríguez C, Gruppi A, Acosta-Rodríguez EV. Interleukin-17 mediated immunity during infections with Trypanosoma cruzi and other protozoans. BBA-Mol Bas Dis. 2020; 1866:175706.

Schechter M, Nogueira N. Variation induced by different methodologies in Trypanosoma cruzi surface antigen profiles. Mol Biochem Parasitol. 1988; 29(1):37-45. doi: 10.1016/0166-6851(88)90117-x.

Silva A M, Brodskyn C I, Takehara H A, Mota I. Differences in the antigenic profile of bloodstream and cell culture derived trypomastigotes of Trypanosoma cruzi. Rev Inst Med Trop São Paulo.1989; 31(3):146-150.

Ferguson M A. The surface glycoconjugates of Trypanosomatid parasites. Phil Trans Roy Soc London Series B: Biological Sciences.1997; 352(1359):1295-1302.

Englund P. The structure and biosynthesis of glycosyl phosphatidyl inositol protein anchors. Ann Rev Biochem. 1993; 62(1):121-138.

McConville M, Ferguson MA. The structure, biosynthesis and function of glycosylated phosphatidylinositol in the parasitic protozoa and higher eukaryotes. Biochem. J. 1993; 294(2):305-324.

Añez-Rojas N, García-Lugo P, Crisante G, Rojas A, Añez N. Isolation, purification and characterization of GPI-anchored membrane proteins from Trypanosoma rangeli and Trypanosoma cruzi. Acta Tropica. 2006; 97(2):140-5.

Rojas A, García-Lugo P, Crisante G, Añez-Rojas N, Añez N. Isolation, purification, characterization and antigenic evaluation of GPI-anchored membrane proteins from Leishmania (Viannia) braziliensis. Acta Tropica. 2008; 105:139-144.

Crisante G, García-Lugo P, Rojas A, Graterol D, Contreras V, Añez N. Validation of Trypanosoma cruzi-GPI anchored membrane proteins for specific sero-diagnosis of Chagas disease. Am J Microbiol Biotech. 2015; 2(3):26-37.

Kumar, V. (2021). Toll-Like Receptors in Adaptive Immunity. Handb Exp Pharmacol. 2021; doi: 10.1007/164_2021_543.

Enlaces refback

  • No hay ningún enlace refback.