Género Aeromonas como patógeno oportunista emergente en peces y humanos, y su resistencia a antibióticos

Dulce Andrea Montes-Pérez, Antonino Baez, Berenice Venegas, Rosalina María de Lourdes Reyes-Luna, Dalia Molina-Romero

Resumen

Aeromonas es un género bacteriano reportado como patógeno emergente; debido a su capacidad de generar enfermedades infecciosas que afectan el sistema gastrointestinal, el circulatorio y algunos tejidos blandos de individuos inmunocomprometidos, adultos mayores e infantes. También, Aeromonas se comporta como un patógeno oportunista de mamíferos y peces, y posee diversos factores de virulencia. Este género prolifera en diversos ambientes como el suelo, agua y diferentes hospederos. La presente revisión bibliográfica tiene como objetivo describir los procesos metabólicos y genéticos que le confieren al género Aeromonas la resistencia a antibióticos, la capacidad de formar biopelícula, los genes regulados por el Quorum Sensing (QS) y la transferencia horizontal de genes. Además, de discutir algunas características que posicionan a la infección por Aeromonas como un problema potencial de salud pública. La revisión exhaustiva se realizó en las bases de datos del Centro Nacional de Información Biotecnológica (NCBI) y del Instituto Multidisciplinario de Publicaciones Digitales (MDPI), del 2017 a la fecha y se consideraron los siguientes criterios de búsqueda: factores de virulencia, resistencia a antibióticos formación de biopelícula y transferencia horizontal de genes. La investigación indicó que Aeromonas presenta varios factores de virulencia extracelulares, enzimáticos y estructurales; es resistente a antibióticos como betalactámicos, tetraciclinas y macrólidos y presenta varios genes que le confieren esta resistencia; asimismo, el género tiene la capacidad de formar biopelícula y posee tres sistemas de QS.

Texto completo:

PDF EPUB HTML

Referencias

Gomes S, Fernandes C, Monteiro S, Cabecinha E, Teixeira

A, Varandas S, et al. The role of aquatic ecosystems

(River Tua, Portugal) as reservoirs of multidrug-resistant

Aeromonas spp. Water. 2021 Mar 5;13(5):698. https://

doi.org/10.3390/w13050698

Lee HJ, Hoel S, Lunestad BT, Lerfall J, Jakobsen AN.

Aeromonas spp. isolated from ready‐to‐eat seafood on

the Norwegian market: prevalence, putative virulence

factors and antimicrobial resistance. Journal of Applied

Microbiology. 2021 Apr;130(4):1380-93. https://doi.

org/10.1111/jam.14865

Dong J, Zhang L, Liu Y, Xu N, Zhou S, Yang Q, et

al. Thymol protects channel catfish from Aeromonas

hydrophila infection by inhibiting aerolysin

expression and biofilm formation. Microorganisms.

Apr 27;8(5):636. https://doi.org/10.3390/

microorganisms8050636

Bhowmick UD, Bhattacharjee S. Bacteriological,

Clinical and Virulence Aspects of-associated Diseases

in Humans. Polish Journal of Microbiology. 2018 Jun

;67(2):137-50. https://doi.org/10.21307/pjm-2018-

Lin X, Lu J, Qian C, Lin H, Li Q, Zhang X, et al.

Molecular and Functional Characterization of a Novel

Plasmid-Borne blaNDM-Like Gene, blaAFM-1, in a

Clinical Strain of Aeromonas hydrophila. Infection and

Drug Resistance. 2021; 14:1613. doi: 10.2147/IDR.

S297419

Pessoa RB, de Oliveira WF, Marques DS, dos Santos

Correia MT, de Carvalho EV, Coelho LC. The genus

Aeromonas: A general approach. Microbial pathogenesis.

May 1; 130:81-94. https://doi.org/10.1016/j.

micpath.2019.02.036.

Organización Mundial de la Salud. Manual de

Bioseguridad en el Laboratorio. Tercera Edición.

OMS, 2005. https://www.who.int/es/publications/i/

item/9241546506

Marinho-Neto FA, Claudiano GS, Yunis-Aguinaga J,

Cueva-Quiroz VA, Kobashigawa KK, Cruz NR, et al.

Morphological, microbiological and ultrastructural

aspects of sepsis by Aeromonas hydrophila in Piaractus

mesopotamicus. PLoS One. 2019 Sep 20;14(9):

e0222626. https://doi.org/10.1371/journal.pone.0222626

Hossain S, De Silva BC, Dahanayake PS, Heo GJ.

Characterization of virulence properties and multi‐

drug resistance profiles in motile Aeromonas spp.

isolated from zebrafish (Danio rerio). Letters in applied

microbiology. 2018 Dec;67(6):598-605. https://doi.

org/10.1111/lam.13075

Deng Y, Wu Y, Jiang L, Tan A, Zhang R, Luo L.

Multi-drug resistance mediated by class 1 integrons in

Aeromonas isolated from farmed freshwater animals.

Frontiers in microbiology. 2016 Jun 15; 7:935. https://

doi.org/10.3389/fmicb.2016.00935

Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles

MR. Virulence factors of Aeromonas hydrophila: in the

wake of reclassification. Frontiers in Microbiology. 2016

Aug 25; 7:1337.

Mendoza-Barberá E, Merino S, Tomás J. Surface

Glucan Structures in Aeromonas spp. Marine Drugs.

Nov 22;19(11):649. https://doi.org/10.3389/

fmicb.2016.01337

Masuyer G. Crystal structure of exotoxin a from

aeromonas pathogenic species. Toxins. 2020 Jun

;12(6):397. https://doi.org/10.3390/toxins12060397

Wickramanayake MV, Dahanayake PS, Hossain S, Heo

GJ. Antimicrobial resistance of pathogenic Aeromonas

spp. isolated from marketed Pacific abalone (Haliotis

discus hannai) in Korea. Journal of applied microbiology.

Feb;128(2):606-17. https://doi.org/10.1111/

jam.14485

Khor WC, Puah SM, Koh TH, Tan JA, Puthucheary SD,

Chua KH. Comparison of clinical isolates of Aeromonas

from Singapore and Malaysia with regard to molecular

identification, virulence, and antimicrobial profiles.

Microbial Drug Resistance. 2018 May 1;24(4):469-78.

https://doi.org/10.1089/mdr.2017.0083

Barger PC, Liles MR, Newton JC. Type II secretion is

essential for virulence of the emerging fish pathogen,

hypervirulent Aeromonas hydrophila. Frontiers in

veterinary science. 2020 Sep 25; 7:574113. https://doi.

org/10.3389/fvets.2020.574113

Shuang ME, Wang YL, LIU CG, Jing YA, Min YU,

et al. Genetic diversity, antimicrobial resistance, and

virulence genes of Aeromonas isolates from clinical

patients, tap water systems, and food. Biomedical and Environmental Sciences. 2020 Jun 1;33(6):385-95.

https://doi.org/10.3967/bes2020.053

Sidhu JP, Gupta VV, Stange C, Ho J, Harris N, Barry K,

et al. Prevalence of antibiotic resistance and virulence

genes in the biofilms from an aquifer recharged with

stormwater. Water Research. 2020 Oct 15; 185:116269.

https://doi.org/10.1016/j.watres.2020.116269

Origgi FC, Benedicenti O, Segner H, Sattler U, Wahli T,

Frey J. Aeromonas salmonicida type III secretion systemeffectors-mediated immune suppression in rainbow trout

(Oncorhynchus mykiss). Fish & shellfish immunology.

Jan 1;60:334-45. https://doi.org/10.1016/j.

fsi.2016.12.006

Del Castillo CS, Hikima JI, Jang HB, Nho SW, Jung TS,

Wongtavatchai J, et al. Comparative sequence analysis

of a multidrug-resistant plasmid from Aeromonas

hydrophila. Antimicrobial agents and chemotherapy.

Jan;57(1):120-9. https://doi.org/10.1128/

AAC.01239-12

Avila-Calderón ED, Otero-Olarra JE, Flores-Romo L,

Peralta H, Aguilera-Arreola MG, Morales-García MR,

Calderón-Amador J, Medina-Chávez O, Donis-Maturano

L, Ruiz-Palma MD, Contreras-Rodríguez A. The outer

membrane vesicles of Aeromonas hydrophila ATCC®

TM: a proteomic analysis and effect on host cells.

Frontiers in Microbiology. 2018 Nov 16; 9:2765. https://

doi.org/10.3389/fmicb.2018.02765

Thomas SG, Abajorga M, Glover MA, Wengert PC,

Parthasarathy A, Savka MA, et al. Aeromonas hydrophila

RIT668 and Citrobacter portucalensis RIT669—

Potential Zoonotic Pathogens Isolated from Spotted

Turtles. Microorganisms. 2020 Nov 17;8(11):1805.

https://doi.org/10.3390/microorganisms8111805

Dias C, Borges A, Saavedra MJ, Simões M. Biofilm

formation and multidrug-resistant Aeromonas spp. from

wild animals. Journal of global antimicrobial resistance.

Mar 1; 12:227-34. https://doi.org/10.1016/j.

jgar.2017.09.010

Ali F, Yao Z, Li W, Sun L, Lin W, Lin X. In-silico

prediction and modeling of the quorum sensing LuxS

protein and inhibition of AI-2 biosynthesis in Aeromonas

hydrophila. Molecules. 2018 Oct 12;23(10):2627.

https://doi.org/10.3390/molecules23102627

Blöcher R, Rodarte Ramírez A, Castro-Escarpulli

G, Curiel-Quesada E, Reyes-Arellano A. Design,

Synthesis, and Evaluation of Alkyl-Quinoxalin-2 (1 H)-

One Derivatives as Anti-Quorum Sensing Molecules,

Inhibiting Biofilm Formation in Aeromonas caviae

Sch3. Molecules. 2018 Nov 24;23(12):3075. https://doi.

org/10.3390/molecules23123075

Jin L, Chen Y, Yang W, Qiao Z, Zhang X. Complete

genome sequence of fish-pathogenic Aeromonas

hydrophila HX-3 and a comparative analysis: insights

into virulence factors and quorum sensing. Scientific reports. 2020 Sep 23;10(1):1-5. https://doi.org/10.1038/

s41598-020-72484-8

Adamczuk M, Dziewit L. Genome-based insights into

the resistome and mobilome of multidrug-resistant

Aeromonas sp. ARM81 isolated from wastewater.

Archives of microbiology. 2017 Jan;199(1):177-83.

https://doi.org/10.1007/s00203-016-1285-6

Shi Y, Tian Z, Gillings MR, Zhang Y, Zhang H, Huyan J,

et al. Novel transposon Tn 6433 variants accelerate the

dissemination of tet (E) in Aeromonas in an aerobic biofilm

reactor under oxytetracycline stresses. Environmental

Science & Technology. 2020 May 8;54(11):6781-91.

https://doi.org/10.1021/acs.est.0c01272

Segatore B, Piccirilli A, Setacci D, Cicolani B, Di

Sabatino A, Miccoli FP, et al. First Identification of

β-Lactamases in Antibiotic-Resistant Escherichia coli,

Citrobacter freundii, and Aeromonas spp. Isolated in

Stream Macroinvertebrates in a Central Italian Region.

Microbial Drug Resistance. 2020 Aug 1;26(8):976-81.

https://doi.org/10.1089/mdr.2019.0258

Hayatgheib N, Calvez S, Fournel C, Pineau L, Pouliquen

H, Moreau E. Antimicrobial susceptibility profiles and

resistance genes in genus Aeromonas spp. isolated from

the environment and rainbow trout of two fish farms in

France. Microorganisms. 2021 Jun 1;9(6):1201. https://

doi.org/10.3390/microorganisms9061201

Zdanowicz M, Mudryk ZJ, Perliński P. Abundance

and antibiotic resistance of Aeromonas isolated from

the water of three carp ponds. Veterinary Research

Communications. 2020 Feb; 44(1):9-18. https://doi.

org/10.1007/s11259-020-09768-x

Bush K, Bradford PA. Epidemiology of β-lactamaseproducing pathogens. Clinical microbiology reviews.

Feb 26;33(2): e00047-19. https://doi.org/10.1128/

CMR.00047-19

Vega-Sánchez V, Latif-Eugenín F, Soriano-Vargas E,

Beaz-Hidalgo R, Figueras MJ, Aguilera-Arreola MG, et

al. Re-identification of Aeromonas isolates from rainbow

trout and incidence of class 1 integron and β-lactamase

genes. Veterinary microbiology. 2014 Aug 27;172(3-

:528-33. https://doi.org/10.1016/j.vetmic.2014.06.012

Nwaiwu O, Aduba CC. An in silico analysis of acquired

antimicrobial resistance genes in Aeromonas plasmids.

AIMS microbiology. 2020;6(1):75. doi: 10.3934/

microbiol.2020005

Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plantderived secondary metabolites as the main source of efflux

pump inhibitors and methods for identification. Journal

of pharmaceutical analysis. 2020 Aug 1;10(4):277-90.

https://doi.org/10.1016/j.jpha.2019.11.002

Hernould M, Gagné S, Fournier M, Quentin C, Arpin

C. Role of the AheABC efflux pump in Aeromonas

hydrophila intrinsic multidrug resistance. Antimicrobial agents and chemotherapy. 2008 Apr;52(4):1559-63.

https://doi.org/10.1128/AAC.01052-07

Yu J, Ramanathan S, Chen L, Zeng F, Li X, Zhao Y,

et al. Comparative transcriptomic analysis reveals

the molecular mechanisms related to oxytetracyclineresistance in strains of Aeromonas hydrophila.

Aquaculture Reports. 2021 Nov 1; 21:100812. https://

doi.org/10.1016/j.aqrep.2021.100812

Lin X, Lin L, Yao Z, Li W, Sun L, Zhang D, et al. An

integrated quantitative and targeted proteomics reveals

fitness mechanisms of Aeromonas hydrophila under

oxytetracycline stress. Journal of proteome research.

Mar 6;14(3):1515-25. https://doi.org/10.1021/

pr501188g

Yao Z, Sun L, Wang Y, Lin L, Guo Z, Li D, et al. Quantitative

proteomics reveals antibiotics resistance function of

outer membrane proteins in Aeromonas hydrophila.

Frontiers in cellular and infection microbiology. 2018

Nov 6; 8:390. https://doi.org/10.3389/fcimb.2018.00390

Wang D, Li H, Ma X, Tang Y, Tang H, Huang D, et

al. Hfq Regulates Efflux Pump Expression and Purine

Metabolic Pathway to Increase Trimethoprim Resistance

in Aeromonas veronii. Frontiers in Microbiology.

;12. doi: 10.3389/fmicb.2021.742114

Zhu W, Zhou S, Chu W. Comparative proteomic

analysis of sensitive and multi-drug resistant Aeromonas

hydrophila isolated from diseased fish. Microbial

pathogenesis. 2020 Feb 1;139: 103930. https://doi.

org/10.1016/j.micpath.2019.103930

Tang L, Huang J, She J, Zhao K, Zhou Y. Co-Occurrence

of the blaKPC-2 and Mcr-3.3 Gene in Aeromonas

caviae SCAc2001 Isolated from Patients with Diarrheal

Disease. Infection and Drug Resistance. 2020; 13:1527.

doi: 10.2147/IDR.S245553

Yu W, Li D, Li H, Tang Y, Tang H, Ma X, et al. Absence

of tmRNA increases the persistence to Cefotaxime

and the intercellular accumulation of metabolite

GlcNAc in Aeromonas veronii. Frontiers in cellular and

infection microbiology. 2020 Feb 28; 10:44. https://doi.

org/10.3389/fcimb.2020.00044

Fu Y, Zhang L, Wang G, Lin Y, Ramanathan S, Yang

G, et al. The LysR-type transcriptional regulator YeeY

plays important roles in the regulatory of furazolidone

resistance in Aeromonas hydrophila. Frontiers in

Microbiology. 2020 Sep 9; 11:577376. https://doi.

org/10.3389/fmicb.2020.577376

Li W, Ali F, Cai Q, Yao Z, Sun L, Lin W, et al. Quantitative

proteomic analysis reveals that chemotaxis is involved

in chlortetracycline resistance of Aeromonas hydrophila.

Journal of proteomics. 2018 Feb 10; 172:143-51. https://

doi.org/10.1016/j.jprot.2017.09.011

Lo CC, Liao WY, Chou MC, Wu YY, Yeh TH, Lo HR.

Overexpression of Resistance-Nodulation-Division

Efflux Pump Genes Contributes to Multidrug Resistance in Aeromonas hydrophila Clinical Isolates. Microbial

Drug Resistance. 2022 Feb 1; 28(2):153-60. https://doi.

org/10.1089/mdr.2021.0084.

Dong Y, Li Q, Geng J, Cao Q, Zhao D, Jiang M, et al.

The TonB system in Aeromonas hydrophila NJ-35 is

essential for MacA2B2 efflux pump-mediated macrolide

resistance. Veterinary research. 2021 Dec;52(1):1-0.

https://doi.org/10.1186/s13567-021-00934-w

Lin L, Wang Y, Srinivasan R, Zhang L, Song H, Song Q,

Wang G, Lin X. Quantitative Proteomics Reveals That

the Protein Components of Outer Membrane Vesicles

(OMVs) in Aeromonas hydrophila Play Protective

Roles in Antibiotic Resistance. Journal of Proteome

Research. 2022 Jun 8. https://doi.org/10.1021/acs.

jproteome.2c00114

Tran F, Boedicker JQ. Genetic cargo and bacterial

species set the rate of vesicle-mediated horizontal gene

transfer. Scientific reports. 2017 Aug 18;7(1):1-0. https://

doi.org/10.1038/s41598-017-07447-7

Grilo ML, Amaro G, Chambel L, Marques CS,

Marques TA, Gil F, Sousa-Santos C, Robalo JI,

Oliveira M. Aeromonas spp. Prevalence, Virulence,

and Antimicrobial Resistance in an Ex Situ Program

for Threatened Freshwater Fish—A Pilot Study with

Protective Measures. Animals. 2022 Feb 11;12(4):436.

https://doi.org/10.3390/ani12040436

Onuoha, S. C. “Occurrence and Antibiotic Susceptibility

of Aeromonas species from Piggery Farms in Ebonyi

State, Nigeria Onuoha, S. C*, Eronmosele, BO, 2 Okoh,

FN, 2 Okafor, CO, 2 Onwere, CC 2 and Ovia, KN 2.”

Nigerian Journal of Microbiology (2022). https://orcid.

org/ 0000-0002-6076-3910

Figueira V, Vaz-Moreira I, Silva M, Manaia CM.

Diversity and antibiotic resistance of Aeromonas spp.

in drinking and waste water treatment plants. Water

research. 2011 Nov 1;45(17):5599-611. https://doi.

org/10.1016/j.watres.2011.08.021

Uechi K, Tada T, Sawachi Y, Hishinuma T, Takaesu

R, Nakama M, et al. A carbapenem-resistant clinical

isolate of Aeromonas hydrophila in Japan harbouring an

acquired gene encoding GES-24 β-lactamase. Journal

of Medical Microbiology. 2018 Nov 1;67(11):1535-7.

https://doi.org/10.1099/jmm.0.000842

Woo SJ, Kim MS, Jeong MG, Do MY, Hwang SD, Kim

WJ. Establishment of Epidemiological Cut-Off Values

and the Distribution of Resistance Genes in Aeromonas

hydrophila and Aeromonas veronii Isolated from Aquatic

Animals. Antibiotics. 2022 Mar 5;11(3):343. https://doi.

org/10.3390/antibiotics11030343

Ragupathi NK, Sethuvel DP, Anandan S, Murugan

D, Asokan K, Mohan RG, et al. First hybrid complete

genome of Aeromonas veronii reveals chromosomemediated novel structural variant mcr-3.30 from a human clinical sample. Access microbiology. 2020;2(4). doi: 10.1099/acmi.0.000103.

Jagoda SD, Honein K, Arulkanthan A, Ushio H,

Asakawa S. Genome sequencing and annotation of

Aeromonas veronii strain Ae52, a multidrug-resistant

isolate from septicaemic gold fish (Carassius auratus) in

Sri Lanka. Genomics Data. 2017 Mar 1; 11:46-8. https://

doi.org/10.1016/j.gdata.2016.11.011

Prediger KD, Dallagassa CB, Moriel B, Vizzotto BS,

Volanski W, Souza EM, et al. Virulence characteristics

and antimicrobial resistance of Aeromonas veronii

biovar sobria 312M, a clinical isolate. Brazilian Journal

of Microbiology. 2020 Jun;51(2):511-8. https://doi.

org/10.1007/s42770-019-00180-5

Vincent AT, Trudel MV, Paquet VE, Boyle B, Tanaka

KH, Dallaire-Dufresne S, et al. Detection of variants

of the pRAS3, pAB5S9, and pSN254 plasmids in

Aeromonas salmonicida subsp. salmonicida: multidrug

resistance, interspecies exchanges, and plasmid

reshaping. Antimicrobial agents and chemotherapy.

Dec;58(12):7367-74. https://doi.org/10.1128/

AAC.03730-14

Massicotte MA, Vincent AT, Schneider A, Paquet VE,

Frenette M, Charette SJ. One Aeromonas salmonicida

subsp. salmonicida isolate with a pAsa5 variant bearing

antibiotic resistance and a pRAS3 variant making a link

with a swine pathogen. Science of the Total Environment.

Nov 10; 690:313-20. https://doi.org/10.1016/j.

scitotenv.2019.06.456

Dahanayake PS, Hossain S, Wickramanayake MV,

Heo GJ. Antibiotic and heavy metal resistance genes in

Aeromonas spp. isolated from marketed Manila Clam

(Ruditapes philippinarum) in Korea. Journal of applied

microbiology. 2019 Sep;127(3):941-52. https://doi.

org/10.1111/jam.14355

Bello-López JM, Sánchez-Garibay C, Ibáñez-Cervantes

G, León-García G, Gonzalez-Avila LU, HernándezCortez C, et al. Genetic and phenotypic determinants

of resistance to antibiotics in Aeromonas spp., strains

isolated from pediatric patients. The Journal of Infection

in Developing Countries. 2020 Oct 31;14(10):1146-54.

https://doi.org/10.3855/jidc.12966

Zhou Y, Yu L, Nan Z, Zhang P, Kan B, Yan D, et al.

Taxonomy, virulence genes and antimicrobial resistance

of Aeromonas isolated from extra-intestinal and intestinal

infections. BMC infectious diseases. 2019 Dec;19(1):1-

https://doi.org/10.1186/s12879-019-3766-0

Vincent AT, Intertaglia L, Loyer V, Paquet VE, Adouane

É, Martin P, Bérard C, Lami R, Charette SJ. AsaGEI2d:

a new variant of a genomic island identified in a group

of Aeromonas salmonicida subsp. salmonicida isolated

from France, which bears the pAsa7 plasmid. FEMS

Microbiology Letters. 2021 Mar;368(4): fnab021.

https://doi.org/10.1093/femsle/fnab021

Desbois AP, Cook KJ, Buba E. Antibiotics modulate

biofilm formation in fish pathogenic isolates of atypical

Aeromonas salmonicida. Journal of fish diseases. 2020

Nov;43(11):1373-9. https://doi.org/10.1111/jfd.13232

Hoa TT, Nakayama T, Huyen HM, Harada K, Hinenoya

A, Phuong NT, et al. Extended‐spectrum beta‐lactamase‐

producing Escherichia coli harbouring sul and mcr‐1

genes isolates from fish gut contents in the Mekong

Delta, Vietnam. Letters in applied microbiology. 2020

Jul;71(1):78-85. https://doi.org/10.1111/lam.13222

Grilo ML, Pereira A, Sousa-Santos C, Robalo JI, Oliveira

M. Climatic Alterations Influence Bacterial Growth,

Biofilm Production and Antimicrobial Resistance Profiles

in Aeromonas spp. Antibiotics. 2021 Aug 20;10(8):1008.

https://doi.org/10.3390/antibiotics10081008

MacFadden DR, McGough SF, Fisman D, Santillana M,

Brownstein JS. Antibiotic resistance increases with local

temperature. Nature Climate Change. 2018 Jun;8(6):510-

https://doi.org/10.1038/s41558-018-0161-6

Dong Y, Geng J, Liu J, Pang M, Awan F, Lu C, et al.

Roles of three TonB systems in the iron utilization and

virulence of the Aeromonas hydrophila Chinese epidemic

strain NJ-35. Applied microbiology and biotechnology.

May;103(10):4203-15. https://doi.org/10.1007/

s00253-019-09757-4

Trudel MV, Vincent AT, Attéré SA, Labbé M, Derome N,

Culley AI, et al. Diversity of antibiotic-resistance genes

in Canadian isolates of Aeromonas salmonicida subsp.

salmonicida: dominance of pSN254b and discovery of

pAsa8. Scientific reports. 2016 Oct 18;6(1):1-0. https://

doi.org/10.1038/srep35617

Enlaces refback

  • No hay ningún enlace refback.