Resistencia a antibióticos del género Aeromonas, como patógeno oportunista emergente en peces y humanos
Resumen
Aeromonas es un género de bacterias Gram negativas reportado como patógeno emergente en algunos grupos de la población humana; debido a su capacidad de generar enfermedades infecciosas que afectan el sistema gastrointestinal, el circulatorio y algunos tejidos blandos de individuos inmuno-comprometidos, adultos mayores e infantes. Aeromonas es también un patógeno oportunista de mamíferos y peces que posee diversos factores de virulencia. Las bacterias de este género proliferan en diversos ambientes como el suelo, agua y en diferentes hospederos, y presentan una gran capacidad de adaptación. En este trabajo se realizó una revisión exhaustiva, en las bases de datos del Centro Nacional de Información Biotecnológica (NCBI) y del Instituto Multidisciplinario de Publicaciones Digitales (MDPI), cuyos criterios de selección fueron: primero, que la investigación demostró que Aeromonas es resistente a antibióticos, así como la caracterización de los genes que le confieren esta resistencia; segundo, la investigación evidencio la capacidad de Aeromonas para formar biopelícula; tercero, el artículo evidenció que la transferencia horizontal de genes le confirió la resistencia a antibióticos; y cuarto, los artículos deben estar publicados en los últimos 5 años. Por lo que el objetivo principal de esta revisión es describir los procesos del género Aeromonas que le proporcionan la resistencia a antibióticos como: la capacidad de formar biopelícula, los genes regulados por Quorum Sensing, y los procesos de la transferencia horizontal de genes. Además, se discutirán algunas características que posicionan a la infección por Aeromonas como un problema de salud pública nacional.
Referencias
Gomes S, Fernandes C, Monteiro S, Cabecinha E, Teixeira A, Varandas S, et al. The role of aquatic ecosystems (River Tua, Portugal) as reservoirs of multidrug-resistant Aeromonas spp. Water. 2021 Mar 5;13(5):698. https://doi.org/10.3390/w13050698
Lee HJ, Hoel S, Lunestad BT, Lerfall J, Jakobsen AN. Aeromonas spp. isolated from ready‐to‐eat seafood on the Norwegian market: prevalence, putative virulence factors and antimicrobial resistance. Journal of Applied Microbiology. 2021 Apr;130(4):1380-93. https://doi.org/10.1111/jam.14865
Bhowmick UD, Bhattacharjee S. Bacteriological, Clinical and Virulence Aspects of-associated Diseases in Humans. Polish Journal of Microbiology. 2018 Jun 30;67(2):137-50. https://doi.org/10.21307/pjm-2018-020
Park SY, Choi SY, Ha SD. Predictive modeling for the growth of Aeromonas hydrophila on lettuce as a function of combined storage temperature and relative humidity. Foodborne pathogens and disease. 2019 Jun 1;16(6):376-83. https://doi.org/10.1089/fpd.2018.2590
Dong J, Zhang L, Liu Y, Xu N, Zhou S, Yang Q, et al. Thymol protects channel catfish from Aeromonas hydrophila infection by inhibiting aerolysin expression and biofilm formation. Microorganisms. 2020 Apr 27;8(5):636. https://doi.org/10.3390/microorganisms8050636
Lin X, Lu J, Qian C, Lin H, Li Q, Zhang X, et al. Molecular and Functional Characterization of a Novel Plasmid-Borne blaNDM-Like Gene, blaAFM-1, in a Clinical Strain of Aeromonas hydrophila. Infection and Drug Resistance. 2021;14:1613. doi: 10.2147/IDR.S297419
Batra P, Mathur P, Misra MC. Aeromonas spp.: an emerging nosocomial pathogen. Journal of laboratory physicians. 2016 Jan;8(01):001-4. doi: 10.4103/0974-2727.176234
Pessoa RB, de Oliveira WF, Marques DS, dos Santos Correia MT, de Carvalho EV, Coelho LC. The genus Aeromonas: A general approach. Microbial pathogenesis. 2019 May 1;130:81-94. https://doi.org/10.1016/j.micpath.2019.02.036.
Organización Mundial de la Salud. Manual de Bioseguridad en el Laboratorio. Tercera Edición. OMS, 2005. https://www.who.int/es/publications/i/item/9241546506
Syrova E, Kohoutova L, Dolejska M, Papezikova I, Kutilova I, Cizek A, et al. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries. Journal of applied microbiology. 2018 Dec;125(6):1702-13. https://doi.org/10.1111/jam.14075
Marinho-Neto FA, Claudiano GS, Yunis-Aguinaga J, Cueva-Quiroz VA, Kobashigawa KK, Cruz NR, et al. Morphological, microbiological and ultrastructural aspects of sepsis by Aeromonas hydrophila in Piaractus mesopotamicus. PLoS One. 2019 Sep 20;14(9): e0222626. https://doi.org/10.1371/journal.pone.0222626
Ran C, Qin C, Xie M, Zhang J, Li J, Xie Y, et al. Aeromonas veronii and aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environmental microbiology. 2018 Sep;20(9):3442-56. https://doi.org/10.1111/1462-2920.14390
Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Frontiers in Microbiology. 2016 Aug 25;7:1337.
Mendoza-Barberá E, Merino S, Tomás J. Surface Glucan Structures in Aeromonas spp. Marine Drugs. 2021 Nov 22;19(11):649. https://doi.org/10.3389/fmicb.2016.01337
Masuyer G. Crystal structure of exotoxin a from aeromonas pathogenic species. Toxins. 2020 Jun 15;12(6):397. https://doi.org/10.3390/toxins12060397
Wickramanayake MV, Dahanayake PS, Hossain S, Heo GJ. Antimicrobial resistance of pathogenic Aeromonas spp. isolated from marketed Pacific abalone (Haliotis discus hannai) in Korea. Journal of applied microbiology. 2020 Feb;128(2):606-17. https://doi.org/10.1111/jam.14485
Hossain S, De Silva BC, Dahanayake PS, Heo GJ. Characterization of virulence properties and multi‐drug resistance profiles in motile Aeromonas spp. isolated from zebrafish (Danio rerio). Letters in applied microbiology. 2018 Dec;67(6):598-605. https://doi.org/10.1111/lam.13075
Barger PC, Liles MR, Newton JC. Type II secretion is essential for virulence of the emerging fish pathogen, hypervirulent Aeromonas hydrophila. Frontiers in veterinary science. 2020 Sep 25;7:574113. https://doi.org/10.3389/fvets.2020.574113
Origgi FC, Benedicenti O, Segner H, Sattler U, Wahli T, Frey J. Aeromonas salmonicida type III secretion system-effectors-mediated immune suppression in rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology. 2017 Jan 1;60:334-45. https://doi.org/10.1016/j.fsi.2016.12.006
Shuang ME, Wang YL, LIU CG, Jing YA, Min YU, et al. Genetic diversity, antimicrobial resistance, and virulence genes of Aeromonas isolates from clinical patients, tap water systems, and food. Biomedical and Environmental Sciences. 2020 Jun 1;33(6):385-95. https://doi.org/10.3967/bes2020.053
Del Castillo CS, Hikima JI, Jang HB, Nho SW, Jung TS, Wongtavatchai J, et al. Comparative sequence analysis of a multidrug-resistant plasmid from Aeromonas hydrophila. Antimicrobial agents and chemotherapy. 2013 Jan;57(1):120-9. https://doi.org/10.1128/AAC.01239-12
Sidhu JP, Gupta VV, Stange C, Ho J, Harris N, Barry K, et al. Prevalence of antibiotic resistance and virulence genes in the biofilms from an aquifer recharged with stormwater. Water Research. 2020 Oct 15;185:116269. https://doi.org/10.1016/j.watres.2020.116269
Thomas SG, Abajorga M, Glover MA, Wengert PC, Parthasarathy A, Savka MA, et al. Aeromonas hydrophila RIT668 and Citrobacter portucalensis RIT669—Potential Zoonotic Pathogens Isolated from Spotted Turtles. Microorganisms. 2020 Nov 17;8(11):1805. https://doi.org/10.3390/microorganisms8111805
Dias C, Borges A, Saavedra MJ, Simões M. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. Journal of global antimicrobial resistance. 2018 Mar 1;12:227-34. https://doi.org/10.1016/j.jgar.2017.09.010
Ali F, Yao Z, Li W, Sun L, Lin W, Lin X. In-silico prediction and modeling of the quorum sensing LuxS protein and inhibition of AI-2 biosynthesis in Aeromonas hydrophila. Molecules. 2018 Oct 12;23(10):2627. https://doi.org/10.3390/molecules23102627
Blöcher R, Rodarte Ramírez A, Castro-Escarpulli G, Curiel-Quesada E, Reyes-Arellano A. Design, Synthesis, and Evaluation of Alkyl-Quinoxalin-2 (1 H)-One Derivatives as Anti-Quorum Sensing Molecules, Inhibiting Biofilm Formation in Aeromonas caviae Sch3. Molecules. 2018 Nov 24;23(12):3075. https://doi.org/10.3390/molecules23123075
Jin L, Chen Y, Yang W, Qiao Z, Zhang X. Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Scientific reports. 2020 Sep 23;10(1):1-5. https://doi.org/10.1038/s41598-020-72484-8
Chenia HY, Duma S. Characterization of virulence, cell surface characteristics and biofilm‐forming ability of Aeromonas spp. isolates from fish and sea water. Journal of fish diseases. 2017 Mar;40(3):339-50. https://doi.org/10.1111/jfd.12516
Adamczuk M, Dziewit L. Genome-based insights into the resistome and mobilome of multidrug-resistant Aeromonas sp. ARM81 isolated from wastewater. Archives of microbiology. 2017 Jan;199(1):177-83. https://doi.org/10.1007/s00203-016-1285-6
Shi Y, Tian Z, Gillings MR, Zhang Y, Zhang H, Huyan J, et al. Novel transposon Tn 6433 variants accelerate the dissemination of tet (E) in Aeromonas in an aerobic biofilm reactor under oxytetracycline stresses. Environmental Science & Technology. 2020 May 8;54(11):6781-91. https://doi.org/10.1021/acs.est.0c01272
Segatore B, Piccirilli A, Setacci D, Cicolani B, Di Sabatino A, Miccoli FP, et al.. First Identification of β-Lactamases in Antibiotic-Resistant Escherichia coli, Citrobacter freundii, and Aeromonas spp. Isolated in Stream Macroinvertebrates in a Central Italian Region. Microbial Drug Resistance. 2020 Aug 1;26(8):976-81. https://doi.org/10.1089/mdr.2019.0258
Hayatgheib N, Calvez S, Fournel C, Pineau L, Pouliquen H, Moreau E. Antimicrobial susceptibility profiles and resistance genes in genus Aeromonas spp. isolated from the environment and rainbow trout of two fish farms in France. Microorganisms. 2021 Jun 1;9(6):1201. https://doi.org/10.3390/microorganisms9061201
Zhong C, Han M, Yang P, Chen C, Yu H, Wang L, et al. Comprehensive analysis reveals the evolution and pathogenicity of Aeromonas, viewed from both single isolated species and microbial communities. Msystems. 2019 Oct 22;4(5):e00252-19. https://doi.org/10.1128/mSystems.00252-19
Zdanowicz M, Mudryk ZJ, Perliński P. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Veterinary Research Communications. 2020 Feb;44(1):9-18. https://doi.org/10.1007/s11259-020-09768-x
Vega-Sánchez V, Latif-Eugenín F, Soriano-Vargas E, Beaz-Hidalgo R, Figueras MJ, Aguilera-Arreola MG, et al. Re-identification of Aeromonas isolates from rainbow trout and incidence of class 1 integron and β-lactamase genes. Veterinary microbiology. 2014 Aug 27;172(3-4):528-33. https://doi.org/10.1016/j.vetmic.2014.06.012
Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clinical microbiology reviews. 2020 Feb 26;33(2):e00047-19. https://doi.org/10.1128/CMR.00047-19
Deng Y, Wu Y, Jiang L, Tan A, Zhang R, Luo L. Multi-drug resistance mediated by class 1 integrons in Aeromonas isolated from farmed freshwater animals. Frontiers in microbiology. 2016 Jun 15;7:935. https://doi.org/10.3389/fmicb.2016.00935
Nwaiwu O, Aduba CC. An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS microbiology. 2020;6(1):75. doi: 10.3934/microbiol.2020005
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical microbiology reviews. 2015 Apr;28(2):337-418. https://doi.org/10.1128/CMR.00117-14
Seukep AJ, Kuete V, Nahar L, Sarker SD, Guo M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. Journal of pharmaceutical analysis. 2020 Aug 1;10(4):277-90. https://doi.org/10.1016/j.jpha.2019.11.002
Hernould M, Gagné S, Fournier M, Quentin C, Arpin C. Role of the AheABC efflux pump in Aeromonas hydrophila intrinsic multidrug resistance. Antimicrobial agents and chemotherapy. 2008 Apr;52(4):1559-63. https://doi.org/10.1128/AAC.01052-07
Yu J, Ramanathan S, Chen L, Zeng F, Li X, Zhao Y, et al. Comparative transcriptomic analysis reveals the molecular mechanisms related to oxytetracycline-resistance in strains of Aeromonas hydrophila. Aquaculture Reports. 2021 Nov 1;21:100812. https://doi.org/10.1016/j.aqrep.2021.100812
Lin X, Lin L, Yao Z, Li W, Sun L, Zhang D, et al. An integrated quantitative and targeted proteomics reveals fitness mechanisms of Aeromonas hydrophila under oxytetracycline stress. Journal of proteome research. 2015 Mar 6;14(3):1515-25. https://doi.org/10.1021/pr501188g
Yao Z, Sun L, Wang Y, Lin L, Guo Z, Li D, et al. Quantitative proteomics reveals antibiotics resistance function of outer membrane proteins in Aeromonas hydrophila. Frontiers in cellular and infection microbiology. 2018 Nov 6;8:390. https://doi.org/10.3389/fcimb.2018.00390
Wang D, Li H, Ma X, Tang Y, Tang H, Huang D, et al. Hfq Regulates Efflux Pump Expression and Purine Metabolic Pathway to Increase Trimethoprim Resistance in Aeromonas veronii. Frontiers in Microbiology. 2021;12. doi: 10.3389/fmicb.2021.742114
Zhu W, Zhou S, Chu W. Comparative proteomic analysis of sensitive and multi-drug resistant Aeromonas hydrophila isolated from diseased fish. Microbial pathogenesis. 2020 Feb 1;139:103930. https://doi.org/10.1016/j.micpath.2019.103930
Tang L, Huang J, She J, Zhao K, Zhou Y. Co-Occurrence of the blaKPC-2 and Mcr-3.3 Gene in Aeromonas caviae SCAc2001 Isolated from Patients with Diarrheal Disease. Infection and Drug Resistance. 2020;13:1527. doi: 10.2147/IDR.S245553
Yu W, Li D, Li H, Tang Y, Tang H, Ma X, et al. Absence of tmRNA increases the persistence to Cefotaxime and the intercellular accumulation of metabolite GlcNAc in Aeromonas veronii. Frontiers in cellular and infection microbiology. 2020 Feb 28;10:44. https://doi.org/10.3389/fcimb.2020.00044
Fu Y, Zhang L, Wang G, Lin Y, Ramanathan S, Yang G, et al. The LysR-type transcriptional regulator YeeY plays important roles in the regulatory of furazolidone resistance in Aeromonas hydrophila. Frontiers in Microbiology. 2020 Sep 9;11:577376. https://doi.org/10.3389/fmicb.2020.577376
Li W, Ali F, Cai Q, Yao Z, Sun L, Lin W, et al. Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila. Journal of proteomics. 2018 Feb 10;172:143-51. https://doi.org/10.1016/j.jprot.2017.09.011
Lo CC, Liao WY, Chou MC, Wu YY, Yeh TH, Lo HR. Overexpression of Resistance-Nodulation-Division Efflux Pump Genes Contributes to Multidrug Resistance in Aeromonas hydrophila Clinical Isolates. Microbial Drug Resistance. 2022 Feb 1;28(2):153-60. https://doi.org/10.1089/mdr.2021.0084
Dong Y, Li Q, Geng J, Cao Q, Zhao D, Jiang M, et al. The TonB system in Aeromonas hydrophila NJ-35 is essential for MacA2B2 efflux pump-mediated macrolide resistance. Veterinary research. 2021 Dec;52(1):1-0. https://doi.org/10.1186/s13567-021-00934-w
Uechi K, Tada T, Sawachi Y, Hishinuma T, Takaesu R, Nakama M, et al. A carbapenem-resistant clinical isolate of Aeromonas hydrophila in Japan harbouring an acquired gene encoding GES-24 β-lactamase. Journal of Medical Microbiology. 2018 Nov 1;67(11):1535-7. https://doi.org/10.1099/jmm.0.000842
Woo SJ, Kim MS, Jeong MG, Do MY, Hwang SD, Kim WJ. Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. Antibiotics. 2022 Mar 5;11(3):343. https://doi.org/10.3390/antibiotics11030343
Ragupathi NK, Sethuvel DP, Anandan S, Murugan D, Asokan K, Mohan RG, et al. First hybrid complete genome of Aeromonas veronii reveals chromosome-mediated novel structural variant mcr-3.30 from a human clinical sample. Access microbiology. 2020;2(4). doi: 10.1099/acmi.0.000103
Jagoda SD, Honein K, Arulkanthan A, Ushio H, Asakawa S. Genome sequencing and annotation of Aeromonas veronii strain Ae52, a multidrug-resistant isolate from septicaemic gold fish (Carassius auratus) in Sri Lanka. Genomics Data. 2017 Mar 1;11:46-8. https://doi.org/10.1016/j.gdata.2016.11.011
Prediger KD, Dallagassa CB, Moriel B, Vizzotto BS, Volanski W, Souza EM, et al. Virulence characteristics and antimicrobial resistance of Aeromonas veronii biovar sobria 312M, a clinical isolate. Brazilian Journal of Microbiology. 2020 Jun;51(2):511-8. https://doi.org/10.1007/s42770-019-00180-5
Vincent AT, Trudel MV, Paquet VE, Boyle B, Tanaka KH, Dallaire-Dufresne S, et al. Detection of variants of the pRAS3, pAB5S9, and pSN254 plasmids in Aeromonas salmonicida subsp. salmonicida: multidrug resistance, interspecies exchanges, and plasmid reshaping. Antimicrobial agents and chemotherapy. 2014 Dec;58(12):7367-74. https://doi.org/10.1128/AAC.03730-14
Massicotte MA, Vincent AT, Schneider A, Paquet VE, Frenette M, Charette SJ. One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen. Science of the Total Environment. 2019 Nov 10;690:313-20. https://doi.org/10.1016/j.scitotenv.2019.06.456
Figueira V, Vaz-Moreira I, Silva M, Manaia CM. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water research. 2011 Nov 1;45(17):5599-611. https://doi.org/10.1016/j.watres.2011.08.021
Dahanayake PS, Hossain S, Wickramanayake MV, Heo GJ. Antibiotic and heavy metal resistance genes in Aeromonas spp. isolated from marketed Manila Clam (Ruditapes philippinarum) in Korea. Journal of applied microbiology. 2019 Sep;127(3):941-52. https://doi.org/10.1111/jam.14355
Bello-López JM, Sánchez-Garibay C, Ibáñez-Cervantes G, León-García G, Gonzalez-Avila LU, Hernández-Cortez C, et al. Genetic and phenotypic determinants of resistance to antibiotics in Aeromonas spp., strains isolated from pediatric patients. The Journal of Infection in Developing Countries. 2020 Oct 31;14(10):1146-54. https://doi.org/10.3855/jidc.12966
Khor WC, Puah SM, Koh TH, Tan JA, Puthucheary SD, Chua KH. Comparison of clinical isolates of Aeromonas from Singapore and Malaysia with regard to molecular identification, virulence, and antimicrobial profiles. Microbial Drug Resistance. 2018 May 1;24(4):469-78.
https://doi.org/10.1089/mdr.2017.0083
Zhou Y, Yu L, Nan Z, Zhang P, Kan B, Yan D, et al. Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections. BMC infectious diseases. 2019 Dec;19(1):1-9. https://doi.org/10.1186/s12879-019-3766-0
Vincent AT, Intertaglia L, Loyer V, Paquet VE, Adouane É, Martin P, Bérard C, Lami R, Charette SJ. AsaGEI2d: a new variant of a genomic island identified in a group of Aeromonas salmonicida subsp. salmonicida isolated from France, which bears the pAsa7 plasmid. FEMS Microbiology Letters. 2021 Mar;368(4):fnab021. https://doi.org/10.1093/femsle/fnab021
Desbois AP, Cook KJ, Buba E. Antibiotics modulate biofilm formation in fish pathogenic isolates of atypical Aeromonas salmonicida. Journal of fish diseases. 2020 Nov;43(11):1373-9. https://doi.org/10.1111/jfd.13232
Grilo ML, Pereira A, Sousa-Santos C, Robalo JI, Oliveira M. Climatic Alterations Influence Bacterial Growth, Biofilm Production and Antimicrobial Resistance Profiles in Aeromonas spp. Antibiotics. 2021 Aug 20;10(8):1008. https://doi.org/10.3390/antibiotics10081008
MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nature Climate Change. 2018 Jun;8(6):510-4. https://doi.org/10.1038/s41558-018-0161-6
Dong Y, Geng J, Liu J, Pang M, Awan F, Lu C, et al. Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ-35. Applied microbiology and biotechnology. 2019 May;103(10):4203-15. https://doi.org/10.1007/s00253-019-09757-4
Trudel MV, Vincent AT, Attéré SA, Labbé M, Derome N, Culley AI, et al. Diversity of antibiotic-resistance genes in Canadian isolates of Aeromonas salmonicida subsp. salmonicida: dominance of pSN254b and discovery of pAsa8. Scientific reports. 2016 Oct 18;6(1):1-0. https://doi.org/10.1038/srep35617
Hoa TT, Nakayama T, Huyen HM, Harada K, Hinenoya A, Phuong NT, et al. Extended‐spectrum beta‐lactamase‐producing Escherichia coli harbouring sul and mcr‐1 genes isolates from fish gut contents in the Mekong Delta, Vietnam. Letters in applied microbiology. 2020 Jul;71(1):78-85. https://doi.org/10.1111/lam.13222
Enlaces refback
- No hay ningún enlace refback.