Receptor de los productos finales de glicación avanzada (RAGE) como biomarcador de la obesidad infantil

Mariela Vega-Cárdenas, Juan Manuel Vargas-Morales, Diana Patricia Portales-Pérez, Celia Aradillas-García

Resumen

Introducción. La hiperglucemia e hiperlipidemia contribuyen a la formación endógena de productos finales de glicación avanzada (AGEs), y la dieta constituye parte de las fuentes exógenas. La unión de AGEs al receptor de los productos finales de glicación (RAGE), induce vías de señalización que culminan en la activación de factores de transcripción que promueven la expresión de marcadores inflamatorios y de estrés oxidativo. Los niveles de RAGE soluble (sRAGE) han sido propuestos como biomarcador en enfermedades que cursan con un proceso inflamatorio. Diversos estudios describen el papel de RAGE en la obesidad, por lo que se ha discutido si existe un patrón diferencial entre niños con normo peso y obesidad.

Objetivo. Describir la relación entre RAGE, sus isoformas, ligandos, funciones biológicas, y las comorbilidades relacionadas con la obesidad infantil. Determinar si los niveles disminuidos de sRAGE representan un biomarcador de la obesidad infantil con base en los resultados de estudios clínicos, observacionales y transversales.

Metodología. Revisión descriptiva de estudios publicados en el periodo del año 2016 al 2022 en las bases de datos PubMed y Google Académico empleando los términos “AGEs”, “RAGE”, “sRAGE”, y “obesidad infantil”.

Resultados y conclusiones. Fueron consultados un total de 141 artículos relacionados con las palabras clave. El criterio de eliminación consistió en referencias publicadas antes del 2015, con excepción de las referencias clásicas. Se revisaron 63 artículos de 2016 a 2022, 6 representan estudios transversales sobre los niveles de sRAGE en población pediátrica, encontrando diferencias en la expresión de RAGE de acuerdo con el estado nutricional.

Texto completo:

PDF EPUB HTML

Referencias

Weihrauch-Blüher S, Schwarz P, Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019 Mar; 92:147–52. doi: 10.1016/j.metabol.2018.12.001

Di Cesare M, Sorić M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019 Nov; 17(1) :212. doi: 10.1186/s12916-019-1449-8

Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, Gabbianelli R, Mazur A, et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients. 2021 Nov; 13(11):4176. doi:10.3390/nu13114176.

De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007 Sep; 85(9):660-7. doi: 10.2471/blt.07.043497.

Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Vol. 8, Frontiers in Pediatrics. Front Pediatr. 2021 Jan; 12(8):581461. doi:10.3389/fped.2020.581461.

Caprio S, Santoro N, Weiss R. Childhood obesity and the associated rise in cardiometabolic complications. Nat Metab. 2020 Mar; 2(3):223-232. doi: 10.1038/s42255-020-0183-z.

Kumar S, Kelly AS. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clinic Proceedings. 2017 Feb; 92(2):251-265. doi: 10.1016/j.mayocp.2016.09.017.

Rogero MM, Calder PC. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. 2018 Mar; 10(4):432. doi: 10.3390/nu10040432.

Vincent HK, Taylor AG. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes (Lond). 2006 Mar; (3):400-18. doi: 10.1038/sj.ijo.0803177.

Faienza MF, Francavilla R, Goffredo R, Ventura A, Marzano F, Panzarino G, et al. Oxidative Stress in Obesity and Metabolic Syndrome in Children and Adolescents. Horm Res Paediatr. 2012; 78(3):158–164. doi: 10.1159/000342642

Moldogazieva NT, Mokhosoev IM, Mel’Nikova TI, Porozov YB, Terentiev AA. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2019 Aug; 2019:3085756. doi: 10.1155/2019/3085756.

Prasad K, Mishra M. AGE–RAGE Stress, Stressors, and Antistressors in Health and Disease. Int J Angiol. 2018 Mar; (1):1-12. doi: 10.1155/2019/308575610.1055/s-0037-1613678.

Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J. Dietary AGEs as Exogenous Boosters of Inflammation. Nutr. 2021 Aug; 13(8):2802. doi: 10.3390/nu13082802.

Stern D, Du Yan S, Fang Yan S, Marie Schmidt A. Receptor for advanced glycation endproducts: A multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev. 2002 Dec; 54(12):1615–25. doi:10.1016/s0169-409x(02)00160-6.

J Liu, A Lin. Wiring the cell signaling circuitry by the NF-kappa B and JNK1 crosstalk and its applications in human diseases. Oncogene. 2007 May; 26(22):3267-78. doi: 10.1038/sj.onc.1210417.

Chen YH, Chen ZW, Li HM, Yan XF, Feng B. AGE/RAGE-Induced EMP Release via the NOX-Derived ROS Pathway. J Diabetes Res. 2018 Mar; 2018:6823058. doi: 10.1155/2018/6823058.

Ruiz HH, Nguyen A, Wang C, He L, Li H, Hallowell P, et al. AGE/RAGE/DIAPH1 axis is associated with immunometabolic markers and risk of insulin resistance in subcutaneous but not omental adipose tissue in human obesity. Int J Obes (Lond). 2021 Sep; 45(9):2083-2094. doi:10.1038/s41366-021-00878-3.

Erusalimsky JD. The use of the soluble receptor for advanced glycation-end products (sRAGE) as a potential biomarker of disease risk and adverse outcomes. Redox Biol. 2021 Jun; 42:101958. doi: 10.1016/j.redox.2021.101958.

Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016 Aug; 33(4):499–512. doi: 10.1007/s10719-016-9694-y.

Perrone A, Giovino A, Benny J, Martinelli F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid Med Cell Longev. 2020 Mar; (2020):3818196. doi: 10.1155/2020/3818196.

Xiang J, Liu F, Wang B, Chen L, Liu W, Tan S. A literature review on maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: Advantages, disadvantages, and avoidance strategies. Foods. 2021 Aug; 10(9):1998. doi: 10.3390/foods10091998.

Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019 Jan; 20:247–60. doi: 10.1016/j.redox.2018.09.025.

Byun K, Yoo YC, Son M, Lee J, Jeong GB, Park YM, et al. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacol Ther. 2017 Sep; 177:44–55. doi: 10.1016/j.pharmthera.2017.02.030.

Sugaya K, Fukagawa T, Matsumoto KI, Mita K, Takahashi EI, Ando A, et al. Three Genes in the Human MHC Class III Region near the Junction with the Class II: Gene for Receptor of Advanced Glycosylation End Products, PBX2 Homeobox Gene and a Notch Homolog, Human Counterpart of Mouse Mammary Tumor Gene int-3. Genomics. 1994 Sep 15;23(2):408–19. doi: 10.1006/geno.1994.1517.

Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 2008 May;22(5):1572–80. doi: 10.1096/fj.07-9909com.

Serveaux-Dancer M, Jabaudon M, Creveaux I, Belville C, Blondonnet R, Gross C, et al. Pathological implications of receptor for advanced glycation end-product (AGER) gene polymorphism. Dis Markers. 2019 Feb ;(2019):2067353. doi: 10.1155/2019/2067353.

Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, et al. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 2008 Oct;22(10):3716–doi: 10.1096/fj.08-109033

Park IH, Yeon SI, Youn JH, Choi JE, Sasaki N, Choi IH, et al. Expression of a novel secreted splice variant of the receptor for advanced glycation end products (RAGE) in human brain astrocytes and peripheral blood mononuclear cells. Mol Immunol. 2004 Mar; 40(16):1203–11. doi: 10.1016/j.molimm.2003.11.027.

Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem. 2017 Sep ;60(17):7213-7232. doi: 10.1021/acs.jmedchem.7b00058.

Aragno M, Mastrocola R. Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients. 2017 Apr; 9(4):385. doi: 10.3390/nu9040385.

Voyer, LE, Alvarado C. Reacción de Maillard: Efectos patogénicos. Med (Buenos Aires). 2019;79.2:137–43.

Pratte KA, Curtis JL, Kechris K, Couper D, Cho MH, Silverman EK, et al. Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Respir Res. 2021 Apr; 22(1):127. doi.org/10.1186/s12931-021-01686-z.

Hudson BI, Lippman ME. Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med. 2018 Jan; 69:349-364. doi: 10.1146/annurev-med-041316-085215

Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis. 2018 Dec; 1864(12):3631-3643. doi: 10.1016/j.bbadis.2018.08.036.

Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019 Jun; 20(3):279-301. doi: 10.1007/s10522-019-09808-3

Ruiz HH, Ramasamy R, Schmidt AM. Advanced Glycation End Products: Building on the Concept of the “Common Soil” in Metabolic Disease. Endocrinology. 2020 Jan; 161(1):bqz006. doi:10.1210/endocr/bqz006.

Kawai T, Autieri M V., Scalia R. Inflammation: From Cellular Mechanisms to Immune Cell Education: Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021 Mar; 320(3):C375-C391. doi: 10.1152/ajpcell.00379.2020.

Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019 May; 20(9):2358. doi: 10.3390/ijms20092358.

Feng Z, Du Z, Shu X, Zhu L, Wu J, Gao Q, et al. Role of RAGE in obesity-induced adipose tissue inflammation and insulin resistance. Cell Death Discov . 2021 Oct; 7(1):305. doi: 10.1038/s41420-021-00711-w.

Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, et al. Receptor for advanced glycation end products (Rage) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: Insights from human subjects and animal models. Front Cardiovasc Med. 2020 Mar; 7:37. doi: 10.3389/fcvm.2020.00037.

Feng Z, Zhu L, Wu J. RAGE signalling in obesity and diabetes: focus on the adipose tissue macrophage. Adipocyte. 2020 Jan 1;9(1):563–6. doi: 10.1080/21623945.2020.1817278.

Dozio E, Vianello E, Bandera F, Longhi E, Brizzola S, Nebuloni M, et al. Soluble Receptor for Advanced Glycation End Products: A Protective Molecule against Intramyocardial Lipid Accumulation in Obese Zucker Rats? Mediators Inflamm. 2019 Feb; 2019:2712376. doi: 10.1155/2019/2712376.

Velayoudom-Cephise FL, Cano-Sanchez M, Bercion S, Tessier F, Yu Y, Boulanger E, et al. Receptor for advanced glycation end products modulates oxidative stress and mitochondrial function in the soleus muscle of mice fed a high-fat diet. Appl Physiol Nutr Metab. 2020 Oct;45(10):1107-1117. doi: 10.1139/apnm-2019-0936.

Aglago EK, Rinaldi S, Freisling H, Jiao L, Hughes DJ, Fedirko V, et al. Soluble Receptor for Advanced Glycation End-products (sRAGE) and Colorectal Cancer Risk: A Case-Control Study Nested within a European Prospective Cohort. Cancer Epidemiol Biomarkers Prev. 2021 Jan; 30(1):182–92. doi: 10.1158/1055-9965.EPI-20-0855.

Laudenslager M, Lazo M, Wang D, Selvin E, Chen PH, Pankow JS, et al. Association between the soluble receptor for advanced glycation end products (sRAGE) and NAFLD in participants in the Atherosclerosis Risk in Communities Study. Dig Liver Dis. 2021 Jul; 53(7):873-878. doi: 10.1016/j.dld.2021.02.005.

Nowak A, Przywara-Chowaniec B, Damasiewicz-Bodzek A, Blachut D, Nowalany-Kozielska E, Tyrpień-Golder K. Advanced glycation end-products (Ages) and their soluble receptor (srage) in women suffering from systemic lupus erythematosus (SLE). Cells. 2021 Dec; 10(12):3523. doi: 10.3390/cells10123523.

Detzen L, Cheng B, Chen CY, Papapanou PN, Lalla E. Soluble Forms of the Receptor for Advanced Glycation Endproducts (RAGE) in Periodontitis. Sci Rep. 2019 Jun; 9(1):8170. doi: 10.1038/s41598-019-44608-2.

Tsoporis JN, Hatziagelaki E, Gupta S, Izhar S, Salpeas V, Tsiavou A, et al. Circulating Ligands of the Receptor for Advanced Glycation End Products and the Soluble Form of the Receptor Modulate Cardiovascular Cell Apoptosis in Diabetes. Molecules. 2020 Nov; 25(22):5235. doi: 10.3390/molecules25225235.

Miranda ER, Somal VS, Mey JT, Blackburn BK, Wang E, Farabi S, et al. Circulating soluble RAGE isoforms are attenuated in obese, impaired-glucose-tolerant individuals and are associated with the development of type 2 diabetes. Am J Physiol Endocrinol Metab. 2017 Dec; 313(6):E631-E640. doi: 10.1152/ajpendo.00146.2017.

Guclu M, Ali A, Eroglu DU, Büyükuysal SO, Cander S, Ocak N. Serum Levels of sRAGE Are Associated with Body Measurements, but Not Glycemic Parameters in Patients with Prediabetes. Metab Syndr Relat Disord. 2016 Feb;14(1):33-9. doi: 10.1089/met.2015.0078.

Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Ann N Y Acad Sci. 2018;1411(1):166. doi: 10.1111/nyas.13602.

Pearce C, Islam N, Bryce R, McNair ED. Advanced Glycation End Products:Receptors for Advanced Glycation End Products Axis in Coronary Stent Restenosis: A Prospective Study. Int J Angiol. 2018 Dec; 27(4):213-222. doi: 10.1055/s-0038-1673660.

Tsoporis JN, Hatziagelaki E, Gupta S, Izhar S, Salpeas V, Tsiavou A, et al. Circulating Ligands of the Receptor for Advanced Glycation End Products and the Soluble Form of the Receptor Modulate Cardiovascular Cell Apoptosis in Diabetes. Molecules. 2020 Nov; 25(22):5235. doi: 10.3390/molecules25225235.

Popp CJ, Zhou B, Manigrasso MB, Li H, Curran M, Hu L, et al. Soluble Receptor for Advanced Glycation End Products (sRAGE) Isoforms Predict Changes in Resting Energy Expenditure in Adults with Obesity during Weight Loss. Curr Dev Nutr. 2022 Mar 29;6(5):nzac046. doi: 10.1093/cdn/nzac046.

Corica D, Aversa T, Ruggeri RM, Cristani M, Alibrandi A, Pepe G, et al. Could AGE/RAGE-related oxidative homeostasis dysregulation enhance susceptibility to pathogenesis of cardio-metabolic complications in childhood obesity? Front Endocrinol (Lausanne). 2019 Jun; 10:426. doi: 10.3389/fendo.2019.00426.

Masania J, Malczewska-Malec M, Razny U, Goralska J, Zdzienicka A, Kiec-Wilk B, et al. Dicarbonyl stress in clinical obesity. Glycoconj J. 2016 Aug; 33(4):581-9. doi: 10.1007/s10719-016-9692-0.

Gupta A, Uribarri J. Dietary Advanced Glycation End Products and Their Potential Role in Cardiometabolic Disease in Children. Horm Res Paediatr. 2016; 85(5):291-300. doi: 10.1159/000444053.

Rodríguez-Mortera R, Luevano-Contreras C, Solorio-Meza S, Gómez-Ojeda A, Caccavello R, Bains Y, et al. Soluble Receptor for Advanced Glycation End Products and Its Correlation with Vascular Damage in Adolescents with Obesity. Horm Res Paediatr. 2019; 92(1):28-35. doi: 10.1159/000501718.

Rowisha M, El-Batch M, El Shikh T, El Melegy S, Aly H. Soluble receptor and gene polymorphism for AGE: relationship with obesity and cardiovascular risks. Pediatr Res. 2016 Jul; 80(1):67-71. doi: 10.1038/pr.2016.55.

Garciá-Salido A, Melen G, Gómez-Pinã V, Onõro-Otero G, Serrano-González A, Casado-Flores J, et al. Circulating soluble RAGE and cell surface RAGE on peripheral blood mononuclear cells in healthy children. J Pediatr Endocrinol Metab. 2018 Jun; 31(6):649-654. doi: 10.1515/jpem-2017-0512.

Ruelas Cinco E del C, Madrigal BR, Domínguez Rosales JA, Maldonado González M, De la Cruz Color L, Ramírez Meza SM, et al. Expression of the receptor of advanced glycation end-products (RAGE) and membranal location in peripheral blood mononuclear cells (PBMC) in obesity and insulin resistance. Iran J Basic Med Sci. 2019 Jun; 22(6):623-630. doi: 10.22038/ijbms.2019.34571.8206.

Garay-Sevilla ME, Torres-Graciano S, Villegas-Rodríguez ME, Rivera-Cisneros AE, Wrobel K, Uribarri J. Advanced glycation end products and their receptors did not show any association with body mass parameters in metabolically healthy adolescents. Acta Paediatr Int J Paediatr. 2018 Dec 1;107(12):2146–51. doi: 10.1111/apa.14426.

Gurecká R, Koborová I, Csongová M, Šebek J, Šebeková K. Correlation among soluble receptors for advanced glycation end-products, soluble vascular adhesion protein-1/semicarbazide-sensitive amine oxidase (sVAP-1) and cardiometabolic risk markers in apparently healthy adolescents: a cross-sectional study. Glycoconj J. 2016 Aug;33(4):599-606. doi: 10.1007/s10719-016-9696-9.

Enlaces refback

  • No hay ningún enlace refback.