SARS-CoV-2 Genomic Surveillance in Nayarit, Mexico (Summer-Winter 2021-2022)

Carlos Eduardo Covantes-Rosales, Victor Wagner Barajas-Carrillo, Gladys Alejandra Toledo-Ibarra, Karina Janice Guadalupe Díaz-Resendiz, Alma Betsaida Benítez-Trinidad, Guadalupe Herminia Ventura-Ramón, Daniel Alberto Girón-Pérez, Bruno Gómez-Gil, Manuel Iván Girón-Pérez


Background: COVID-19, whose etiologic agent is SARS-CoV-2, an RNA virus, is characterized by a high mutation rate. Therefore, while more subjects are infected, greater probability that the virus will potentially undergo changes that confer evolutionary advantages (immune response evasion, increased virulence, and reduced vaccination efficacy). Efforts to acquire herd immunity through vaccination may be compromised in low- and middle-income countries, where the vaccination process is slow and inequitable. This may lead to new variant outbreaks with greater transmission capacity. Therefore, it is important to surveillance the circulating variants in the populations. Methods: In this sense, in Tepic, Nayarit, Mexico, 100 viral genomes of positive patients were sequenced during the beginning and end of the third (August 4th to September 3rd, 2021) and fourth (January 3rd, to February 2nd, 2022) COVID-19 waves. Results: Sequence analysis revealed the presence of several variants; alpha (B.1.1.7), gamma (P.1), local variant (B.1.1.519), mu (B.1.621), delta (B.1.617.2), and its subtypes (AY.3, AY.4, AY.10, AY.11, AY.20, and AY.23.1) during the third wave. Later, during the fourth wave, delta subtypes were still detected (AY.26 and AY.113), as well as omicron (B.1.1.529) and omicron subtypes (B.A.1 and BA.1.1). Conclusion: Obtained data revealed a progressive shift of the dominant variants, delta, and subtypes in the third wave and omicron and subtypes in the fourth wave.

Keywords: SARS-CoV-2, COVID-19, Genomic surveillance, Epidemiological waves.


- Johns Hopkins, COVID-19 Map - Johns Hopkins Coronavirus Resource Center. [Online] 2023. [Accessed on 05/09/23]. Available data at

- Dumache R, Enache A, Macasoi I, Dehelean CA, Dumitrascu V, Mihailescu A, et al. SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens. 2022; 11(5), 516. https://doi:10.3390/pathogens11050516.

- Qureshi MF. SARS-Cov-2: Interaction Between Mutations and Variants and Their Influence on Treatment and Preventive Strategies. J Gstro Hepato. 2022; 8: 1-6.

- Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM, et al. Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases. 2020; 20(6), 656-657.

- Cella E, Benedetti F, Fabris S, Borsetti A, Pezzuto A, Ciotti M, et al. SARS-CoV-2 lineages and sub-lineages circulating worldwide: A Dynamic Overview. Chemotherapy. 2021;66(1-2):3-7. doi: 10.1159/000515340.

- World Health Organization (WHO). Tracking SARS-CoV-2 variants. Geneva: WHO. [Online] 2023a. (Accessed on 05 September 2023]. Available from:

- World Health Organization (WHO). Formerly monitored variants. Geneva: WHO. [Online] 2023b. (Accessed on 02 September 2023). Available from:

- Mastrovito B, Naimi C, Kouam L, Naudot X, Fournier L, Spaccaferri G, et al. Investigation of outbreak cases infected with the SARS-CoV-2 B. 1.640 variant in a fully vaccinated elderly population, Normandy, France, November to December 2021. Euro Surveill. 2022; 27(6), 2200078.

- Park AK, Kim IH, Kim HM, Lee H, Lee NJ., Kim, et al. SARS-CoV-2 B. 1.619 and B. 1.620 Lineages, South Korea, 2021. Emerg Infect Dis. 2022; 28(2), 415.

- Dudas G, Hong SL, Potter BI, Calvignac-Spencer S, Niatou-Singa FS, Tombolomako TB, et al. Emergence and spread of SARS-CoV-2 lineage B. 1.620 with variant of concern-like mutations and deletions. Nat Commun. 2021; 12(1), 5769.

- Tegally H, Ramuth M, Amoaka D, Scheepers C, Wilkinson E, Giovanetti M, et al. Genomic epidemiology of SARS-CoV-2 in Mauritius reveals a new wave of infections dominated by the B.1.1.318, a variant under investigation. medRxiv. 2021; 06.

- Zemaitis, L., Alzbutas, G., Gecys, D., Pautienius, A., Ugenskiene, R., Sukys, et al. Determining the International Spread of B.1.1.523 SARS-CoV-2 Lineage with a Set of Mutations Highly Associated with Reduced Immune Neutralization. Microorganisms. 2022; 10(7), 1356.

- Cosar B, Karagulleoglu ZY, Unal S, Ince AT, Uncuoglu DB, Tuncer G, et al. SARS-CoV-2 mutations and their viral variants. Cytokine Growth Factor Rev. 2022; Feb; 63:10-22. doi: 10.1016/j.cytogfr.2021.06.001.

- Barajas-Carrillo, V. W., Covantes-Rosales, C. E., Zambrano-Soria, M., Castillo-Pacheco, L. A., Girón-Pérez, D. A., Mercado-Salgado, et al. SARS-CoV-2 Transmission Risk Model in an Urban Area of Mexico, Based on GIS Analysis and Viral Load. Int J Environ Res Public Health. 2022 Mar 24;19(7):3840. doi: 10.3390/ijerph19073840.

- Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex). [Online] [Accessed in 12 December 2022]. Available data at

- Girón-Pérez DA, Benitez-Trinidad AB, Ruiz-Manzano RA, Toledo-Ibarra GA, Ventura-Ramón GH, Covantes-Rosales CE, et al. Correlation of hematological parameters and cycle threshold in ambulatory patients with SARS‐CoV‐2 infection. Int J Lab Hematol. 2021 Aug;43(4):873-880. doi: 10.1111/ijlh.13606.

- Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020; 25(3), 2000045.

- Parra-Lucares A, Segura P, Rojas V, Pumarino C, Saint-Pierre G, Toro L. Emergence of SARS-CoV-2 Variants in the World: How Could This Happen?. Life. 2022; 12(2), 194.

- Machingaidze S, Wiysonge CS. Understanding COVID-19 vaccine hesitancy. Nat Med. 2021 Aug;27(8):1338-1339. doi: 10.1038/s41591-021-01459-7.

- Fan G, Song H, Yip S, Zhang T, He D. Impact of low vaccine coverage on the resurgence of COVID-19 in Central and Eastern Europe. One Health. 2022 May 19;14:100402. doi:

- Petersen E, Ntoumi F, Hui DS, Abubakar A, Kramer LD, Obiero C. et al. Emergence of new SARS-CoV-2 Variant of Concern Omicron (B. 1.1. 529)-highlights Africa's research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int J Infect Dis. 2022 Jan;114:268-272.

- Tsheten T, Lowe C, Wangdi K, Kelly M, Mationg ML, Williams GM, et al. COVID-19 continues its rampage in children and in unvaccinated communities due to the Delta and Omicron variants. Infect Dis Trop Med. 2022; 8: e810.

- Taboada B, Zárate S, Iša P, Boukadida C, Vazquez-Perez JA, Muñoz-Medina JE, et al. Genetic Analysis of SARS-CoV-2 Variants in Mexico during the First Year of the COVID-19 Pandemic. Viruses. 2021; 13, 2161.

- Hasan MR, Kalikiri MK, Mirza F, Sundararaju S, Sharma A, Xaba T, et al. Real-time SARS-CoV-2 genotyping by high-throughput multiplex PCR reveals the epidemiology of the variants of concern in Qatar. Int J Infect Dis. 2021 Nov;112:52-54.

- Rahman M, Shirin T, Rahman S, Rahman MM, Hossain ME, Khan MH, et al. The emergence of SARS‐CoV‐2 variants in Dhaka city, Bangladesh. Transbound Emerg Dis. 2021 Nov;68(6):3000-3001.

- Paul P, France AM, Aoki Y, Batra D, Biggerstaff M, Dugan V, et al. Genomic surveillance for SARS-CoV-2 variants circulating in the United States, December 2020–May 2021. MMWR Morb Mortal Wkly Rep. 2021 Jun 11;70(23):846-850.

- Ito K, Piantham C, Nishiura H. Predicted dominance of variant Delta of SARS-CoV-2 before Tokyo olympic games, Japan, July 2021. Euro Surveill. 2021; 26(27), 2100570.

- Ntoumi F, Mapanguy CCM, Tomazatos A, Pallerla SR, Casadei N, Angelov A, et al. Genomic surveillance of SARS-CoV-2 in the Republic of Congo. Int J Infect Dis. 2021 Apr;105:735-738.

- Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, Mileto D, et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ. 2020 Nov 20;744:140911.

- Márquez S, Prado-Vivar B, Guadalupe JJ, Becerra-Wong M, Gutierrez B, Fernández-Cadena JC, et al. SARS-CoV-2 genome sequencing from COVID-19 in Ecuadorian patients: a whole country analysis. medRxiv. 2021; 03.19.21253620.

- Mora EL, Espinoza J, Dabanch J, Cruz R. Emergencia de variante Delta-B. 1.617. 2. Su impacto potencial en la evolución de la pandemia por SARS-CoV-2. Boletín Micológico. 2021; 36(1).

- Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IA, et al. SARS-CoV-2 B. 1.617. 2 Delta variant replication and immune evasion. Nature. 2021; (599): 114–119

- Luo CH, Morris CP, Sachithanandham J, Amadi A, Gaston D, Li M, et al. Infection with the SARS-CoV-2 delta variant is associated with higher infectious virus loads compared to the alpha variant in both unvaccinated and vaccinated individuals. medRxiv. 2021; 21262077.

- Wang C, & Han J. Will the COVID-19 pandemic end with the Delta and Omicron variants?. Environ Chem Lett. 2022; 20(4): 2215–2225.

- Riediker M, Briceno-Ayala L, Ichihara G, Albani D, Poffet D, Tsai DH, et al. Higher viral load and infectivity increase risk of aerosol transmission for Delta and Omicron variants of SARS-CoV-2. Swiss Med Wkly. 2022 Jan 6;152:w30133.

- Young M, Crook H, Scott J, Edison P. Covid-19: virology, variants, and vaccines. BMJ Med. 2022 Apr 1;1(1):e000040.

Enlaces refback

  • No hay ningún enlace refback.