Genetic damage in human blood cells exposed to germicidal lamps and cytoprotection of ascorbic acid

Mónica Reynoso-Silva, Carlos Alvarez-Moya, José de Jesús Vargas-Radillo, Lucía Barrientos-Ramírez, Ramón Rodríguez-Macías

Resumen

Introduction. Germicidal lamps have a wavelength range of 200-280 nm and can affect the integrity of the DNA of people who handle this equipment. Human lymphocytes are excellent biomonitors of genetic damage and widely used with the comet assay.

Objective. Evaluation of genotoxicity in human blood cells exposed to UV-C radiation (254 nm) emitted by germicidal lamps and the cytoprotective effect of ascorbic acid, using the comet test.

Material and methods. Slides containing lymphocytes immersed in agarose gel were exposed to UV-C radiation (254 nm) for periods of 5, 10 and 15 minutes and 70 cm away. The antigenotoxic effect was determined in cells exposed to UV-C for 5 minutes and 70 cm away, subsequently the slides were subjected to an ascorbic acid solution for periods of 5, 10 and 15 for two hours. In both situations, genetic damage was quantified by the comet test using three parameters: tail length, tail moment, and migration groups.

Results. The three parameters detected significant genotoxic activity (p<0.05) in the times of exposure to UV-C and cytoprotective effect of ascorbic acid (p<0.05).

Conclusions. The handling of UV-C germicidal lamps is often wrong and dangerous to exposed people or organisms. These data suggest that ascorbic acid increases DNA protection in cells exposed to UV-C radiation.

Keyword: UV radiation, genetic damage, genotoxicity, ascorbic acid, comet assay.

Referencias

|1. Phillips DH, Arlt VM. Genotoxicity: damage to DNA and its consequences. Mol Clin Environ Toxicol. 2009; 1: 87-110.

Maluf SW, Passos DF, Bacelar A, Speit G, Erdtmann B. Assessment of DNA damage in lymphocytes of workers exposed to X‐radiation using the micronucleus test and the comet assay. Environ Mol Mutagen. 2001; 38(4): 311-315. https://doi.org/10.1002/em.10029

Lee E, Oh E, Lee J, Sul D, Lee J. Use of the tail moment of the lymphocytes to evaluate DNA damage in human biomonitoring studies. Toxicol Sci. 2004; 81(1): 121-132. https://doi.org/10.1093/toxsci/kfh184

Maluf SW. Monitoring DNA damage following radiation exposure using cytokinesis–block micronucleus method and alkaline single-cell gel electrophoresis. Clin Chim Acta. 2004;347(1-2): 15-24. https://doi.org/10.1016/j.cccn.2004.04.010

Narita K, Asano K, Morimoto Y, Igarashi T, Hamblin MR, Dai T, et al. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds. J Photoch Photobiol B. 2018;178: 10-18. https://doi.org/10.1016/j.jphotobiol.2017.10.030

Byrns G, Barham B, Yang L, Webster K, Rutherford G, Steiner G, et al. The uses and limitations of a hand-held germicidal ultraviolet wand for surface disinfection. J Occup Environ Hyg. 2017; 14(10): 749–757. https://doi.org/10.1080/15459624.2017.1328106

Card KJ, Crozier D, Dhawan A, Dinh M, Nathan D, Farrokhian N, et al. (2020). UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the COVID-19 Pandemic. MedRxiv.Preprint.https://www.medrxiv.org/content/10.1101/2020.03.25.20043489v2

Rutala WA, Gergen MF, Weber DJ. Room Decontamination with UV Radiation. Infect Cont Hosp Ep. 2010; 31(10): 1025–1029. https://doi.org/10.1086/656244

Leung KCP, Ko TCS. Improper Use of the Germicidal Range Ultraviolet Lamp for Household Disinfection Leading to Phototoxicity in COVID-19 Suspects. Cornea. 2020; 40(1): 121-122. https://doi.org/10.1097/ico.00000002397

Urban L, Charles F, de Miranda MRA, Aarrouf J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol Bioch. 2016; 105: 1–11. https://doi.org/10.1016/j.plaphy.2016.04.004

US Environmental Protection Agency. Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. United States Environmental Protection Agency, Office of Water (4601) EPA 815-R06-007. Washington: USEPA; 2006. DC%3A%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000000%5C600006T3.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL

Zaffina S, Camisa V, Lembo M, Vinci MR, Tucci MG, Borra M, et al. Accidental Exposure to UV Radiation Produced by Germicidal Lamp: Case Report and Risk Assessment. Photoch Photobio. 2012;88(4):1001-1004. https://doi.org/10.1111/j.1751-1097.2012.01151.x

International Commission on Illumination. UV-C photocarcinogenesis risks from germicidal lamps | CIE Vienna. Austria: Commission International De L’Eclairage; 2010. http://cie.co.at/publications/uv-c-photocarcinogenesis-risks-germicidal-lamps

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5): 235–263. https://doi.org/10.1002/em.22087

Zúñiga GZ. Sistemas de detección de daño genético. In: Alvarez-Moya C. Genética, Ambiente y Salud. Guadalajara: Editorial Universidad de Guadalajara; 2013. P. 55-63.

Glei M, Schneider T, Schlörmann W. Comet assay: an essential tool in toxicological research. Arch Toxicol. 2016; 90(10): 2315-2336. https://doi.org/10.1007/s00204-016-1767-y

Vodicka P, Vodenkova S, Opattova A, Vodickova L. DNA damage and repair measured by comet assay in cancer patients. Mutat Res/Genet Toxi En. 2019; 843: 95-110. https://doi.org/10.1016/j.mrgentox.2019.05.009

Reynoso-Silva M, Álvarez-Moya C, Ramírez-Velasco R, Sámano-León AG, Arvizu-Hernández E, Castañeda-Vásquez H, et al. Migration Groups: A Poorly Explored Point of View for Genetic Damage Assessment Using Comet Assay in Human Lymphocytes. Appl Sci. 2021; 11(9): 4094. https://doi.org/10.3390/app11094094

Alvarez-Moya C, Reynoso-Silva M, Canales-Aguirre AA, Chavez-Chavez JO, Castañeda-Vázquez H, Feria-Velasco AI. Heterogeneity of genetic damage in cervical nuclei and lymphocytes in women with different levels of dysplasia and cancer-associated risk factors. BioMed Res Int. 2015; 2015: 293408. https://doi.org/10.1155/2015/293408

Olive PL, Durand RE. Heterogeneity in DNA damage using the comet assay. Cytometry Part A. 2005; 66A(1): 1-8. https://doi.org/10.1002/cyto.a.20154

Olive PL, Banáth JP, Durand RE. Detection of subpopulations resistant to DNA-damaging agents in spheroids and murine tumours. Mutat Res-Fund Mol M. 1997; 375(2): 157–165. https://doi.org/10.1016/s0027-5107(97)00011-0

Nishigori C, Yamano N, Kunisada M, Nishiaki-Srawada A, Ohashi H, Igarashi T. Biological Impact of Shorter Wavelength Ultraviolet Radiation-C. Photochem Photobiol. 2023; 99(2): 335–343. https://doi.org/10.1111/php.13742

Narra VR, Howell RW, Sastry KS, Rao DV. Vitamin C as a radioprotector against iodine-131 in vivo. J Nucl Med. 1993;34(4): 637-640.

https://jnm.snmjournals.org/content/jnumed/34/4/637.full.pdf

Maeda J, Allum AJ, Mussallem JT, Froning CE, Haskins AH, Buckner MA, et al. Ascorbic Acid 2-Glucoside Pretreatment Protects Cells from Ionizing Radiation, UVC, and Short Wavelength of UVB. Genes. 2020: 11(3); 238. https://doi.org/10.3390/genes11030238

Speit G, Hartmann A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Method Mol Biol.1999; 113: 203-212. https://doi.org/10.1385/1-59259-675-4:203

Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci. 2001; 58(3): 626–639. https://doi.org/10.1139/f01-004

Phillips DH, Arlt VM. Genotoxicity: damage to DNA and its consequences. Mol Clin Environ Toxicol. 2009; (1): 87-110.

https://doi: 10.1007/978-3-7643-8336-7_4

Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 2012; 11(1): 90-97. https://doi.org/10.1039/c1pp05144j

Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov Today. 2007; 12(19): 794-805. https://doi.org/10.1016/j.drudis.2007.07.017

Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002; 79(3): 307-313. https:///doi.org/10.1016/s0308-8146(02)00145-0

Carr A, Maggini S. Vitamin C and Immune Function. Nutrients. 2017; 9(11): 1211-1217. https://doi.org/10.3390/nu9111211

Konopacka M, Palyvoda O, Rzeszowska-Wolny J. Inhibitory effect of ascorbic acid post-treatment on radiation-induced chromosomal damage in human lymphocytes in vitro. Teratogen Carcin Mut. 2002; 22(6): 443–450. https://doi.org/10.1002/tcm.10040

Konopacka M, Rzeszowska-Wolny J. Antioxidant Vitamins C, E and β-carotene reduce DNA damage before as well as after γ-ray irradiation of human lymphocytes in vitro. Mutat Res-Gen Toxicol Environ Mut. 2001; 491(1–2): 1–7. https://doi.org/10.1016/s1383-5718(00)00133-9

Sram RJ, Binkova B, Rossner P. Vitamin C for DNA damage prevention. Mutat Res-Fund Mol M. 2012; 733(1–2): 39–49. https://doi.org/10.1016/j.mrfmmm.2011.12.001

Collins AR, El Yamani N, Lorenzo Y, Shaposhnikov S, Brunborg G, Azqueta A. Controlling variation in the comet assay. Front Genet. 2014; 5: 359. https://doi.org/10.3389/fgene.2014.00359

Enlaces refback

  • No hay ningún enlace refback.