El Sistema de Endocannabinoides como regulador de la lipogénesis y su posible modulación por la mangiferina

Dulce María Soria-Lara, Brayan Vladimir Gaitán-Vélez, Hugo Jiménez-Islas, Rita Miranda-López

Resumen

Actualmente es innegable la participación del sistema endocannabinoides (SEC) en la regulación metabólica; ya que su sobre estimulación ha sido relacionada con varias patologías entre las que se encuentran obesidad, diabetes mellitus, retinopatía e hígado graso no alcohólico, entre otras. Estas patologías se relacionan mutuamente a través de alteraciones del metabolismo de los lípidos, como lo es una sobreestimulación de la síntesis de ácidos grasos, una disminución en la beta-oxidación, hiperglicemia causada por un aumento de la gluconeogénesis, así como en la glucólisis, procesos en los cuales se ha descrito al SEC como un participante crucial. Por otro lado, algunos compuestos fitoquímicos, tales como la mangiferina (MGF), han probado sus efectos farmacológicos en el metabolismo de lípidos a nivel hepático y en el control glicémico. Hasta el momento se desconoce el efecto de la mangiferina sobre los receptores de endocannabinoides, por lo que esta revisión trata de mostrar como el sistema de endocannabinoides regula a nivel sistémico (órganos y tejidos) y a nivel central (Sistema Nervioso) la lipogénesis, además de resaltar como la mangiferina participa de manera opuesta al SEC. Finalmente se infiere, con base en la información publicada hasta el momento, una relación clara entre el posible efecto que pueden tener la MGF sobre el SEC.

Texto completo:

PDF HTML EPUB

Referencias

Heinbockel T. Neurochemical Communication: The Case of Endocannabinoids. In: Neurochemistry. In Tech. 2014. p. 1–20.

Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58(3):389–462.

Di Marzo V, Piscitelli F. The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics. 2015;12(4):692–8.

Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol. 2014;29:1–898.

Crawley JN, Corwin RL, Robinson JK, Felder CC, Devane WA, Axelrod J. Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacol Biochem Behav. 1993;46(4):967–72.

Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.

Berghuis P, Dobszay MB, Wang X, Spano S, Ledda F, Sousa KM, et al. Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci U S A. 2005;102(52):19115–20.

Cortés C, Baez B, Zamora I, Bilbao T, Cebada J, Galicia S, et al. Regulación de la ingesta de alimento: una aproximación al sistema endocannabinoide. Acad Biomédica Digit. 2015;(1):1–10.

Márquez L, Abanades S, Andreu M. Sistema endocannabinoide e inflamación intestinal. Med Clin (Barc). 2008;131(13):513–7.

Dunn SL, Wilkinson JM, Crawford A, Bunning RAD, Le Maitre CL. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies. Cannabis Cannabinoid Res. 2016;1(1):3–15.

Fowler CJ, Tiger G, Ligresti A, López-Rodróguez ML, Di Marzo V. Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis - A difficult issue to handle. Eur J Pharmacol. 2004;492(1):1–11.

Rhee MH, Vogel Z, Barg J, Bayewitch M, Levy R, Hanuš L, et al. Cannabinol derivatives: Binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem. 1997;40(20):3228–33.

Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134(4):845–52.

Valenzuela C, Castillo V, Ronco AM, Aguirre C, Hirsch S, Llanos M. Sistema endocanabinoide y desarrollo de esteatosis hepatica. Rev Med Chil. 2014;142(3):353–60.

Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev. 2016;96(4):1593–659.

MacNaughton W, Van Sickle M, Keenan C, Cushing K, Mackie K, Sharkey K. Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am J Physiol. 2004.

Abdood ME, Martin BR. Molecular Neurobiology of the cannabinoid receptor. Int Rev Neurobiol. 1996;39:197–221.

Freund T, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83:1017–1066.

Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong WI, et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest. 2008;118(9):3160–9.

Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Bátkai S, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest. 2005;115(5):1298–305.

Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance. Endocr Rev. 2006;27(1):73–100.

Schlosser M, Löser H, Siegmund S V, Montesinos-rongen M, Bindila L, Lutz B, et al. The Endocannabinoid , Anandamide , Induces Cannabinoid Receptor-Independent Cell Death in Renal Proximal Tubule Cells. CellBio. 2017;6(40):35–55.

Kaschina E. Cannabinoid CB1 / CB2 Receptors in the Heart : Expression , Regulation , and Function. In: Cannabinoids in Health and Diseas. INTECH; 2016. p. 169–85.

Llanos Casanova M, Blazquez C, Martínez-Palacio J, Villanueva C, Fernández-Aceñero MJ, Huffam JW, et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest [Internet]. 2003;111(1):43–50. Available from: http://www.jci.org/cgi/content/abstract/111/1/43

González-Mariscal I, Egan JM. Endocannabinoids in Islets of Langerhans: The Ugly, the Bad and the Good Facts. Am J Physiol Metab. 2018;(410).

Tomar S, Zumbrun EE, Nagarkatti M, Nagarkatti PS. Protective Role of Cannabinoid Receptor 2 Activation in Galactosamine / Lipopolysaccharide-Induced Acute Liver Failure through Regulation of Macrophage Polarization and MicroRNAs. J Pharmacol Exp Ther. 2015;352(2):369–79.

Khalid AB, Goodyear SR, Ross RA, Aspden RM. Effects of deleting cannabinoid receptor-2 on mechanical and material properties of cortical and trabecular bone. Cogent Eng. 2015;2(1):1001015.

Schmöle A, Lundt R, Ternes S, Albayram Ö, Ulas T, Schultze JL, et al. Neurobiology of Aging Cannabinoid receptor 2 de fi ciency results in reduced neuroin fl ammation in an Alzheimer ’ s disease mouse model. Neurobiol Aging. 2015;36:710–9.

Cota D, Stalla GK, Pagotto U, Cota D, Marsicano G, Tschöp M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis Find the latest version : The endogenous cannabinoid via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003;112(3):423–31.

Shimazu T. Diabetologia Central Nervous System Regulation of Liver and Adipose Tissue Metabolism. Diabetologia. 1981;20:343–56.

Rui L. Energy Metabolism in th Liver. Compr Physiol. 2014;4(1):177–97.

Diraison F, Yankah V, Letexier D, Dusserre E, Jones P, Beylot M, et al. Differences in the regulation of adipose tissue and liver lipogenesis by carbohydrates in humans. J Lipid Res. 2003;44:846–53.

Davies SP, Carling D, Munday MR, Hardie DG. Diurnal rhythm of phosphorylation of rat liver acetyl- CoA carboxylase by the AMP-activated protein kinase , demonstrated using freeze-clamping Effects of high fat diets. Eur J Biochem. 1992;203:615–23.

Hardie DG, Ross F a., Hawley S a. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62.

Takahashi A, Hara T, Shimazu T. Mechanism of lipolysis induced by electrical stimulation of the hypothalamus in the rabbit. J Lipid Res [Internet]. 1976;17:551–8. Available from: http://www.jlr.org/content/17/6/551.full.pdf+html

Wang W, Xiao Z, Li X, Aziz KE, Gan B, Johnson RL, et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Cell Biol. 2015;17(4):490.

Woods A, Williams JR, Muckett PJ, Mayer F V, Liljevald M, Bohlooly-y M, et al. Liver-Specific Activation of AMPK Prevents Steatosis on a High-Fructose Diet Report Liver-Specific Activation of AMPK Prevents Steatosis on a High-Fructose Diet. CellReports. 2017;18(13):3043–51.

Park H, Ahima RS. Leptin signaling. F1000Prime Rep [Internet]. 2014;6:73. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166933/

Di Marzo V, Goparaju SK, Wang L, Liu J. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410(6830):822–5.

Kirkham TC, Williams CM. Endogenous cannabinoids and appetite. Nutr Res Rev. 2001;14(2001):65–86.

Kirkham TC, Williams CM, Fezza F, Marzo V Di. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting , feeding and satiation : stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002;136:550–7.

Hanuš L, Avraham Y, Ben-Shushan D, Zolotarev O, Berry EM, Mechoulam R. Short-term fasting and prolonged semistarvation have opposite effects on 2-AG levels in mouse brain. Brain Res. 2003;983(1–2):144–51.

Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. AJP Cell Physiol. 2010;298(4):C961–71.

Ruderman NB, Carling D, Prentki M, Cacicedo JM. Science in medicine AMPK , insulin resistance , and the metabolic syndrome. J Clin Invest. 2013;123(7):2764–72.

Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem. 2005;280(26):25196–201.

Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001;134:1151–4.

Di S, Malcher-Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003;23(12):4850–7.

Malcher-lopes R, Di S, Marcheselli VS, Weng F, Stuart CT, Bazan NG, et al. Opposing Crosstalk between Leptin and Glucocorticoids Rapidly Modulates Synaptic Excitation via Endocannabinoid Release. Cellular/Molecular. 2006;26(24):6643–50.

Ho J, Cox JM, Wagner EJ. Cannabinoid-induced hyperphagia: correlation with inhibition of proopiomelanocortin neurons? Physiol Behav. 2009;92(3):507–19.

Pinheiro BS, Lemos C, Neutzling Kaufmann F, Marques JM, da Silva-Santos CS, Carvalho E, et al. Hierarchical glucocorticoid-endocannabinoid interplay regulates the activation of the nucleus accumbens by insulin. Brain Res Bull. 2016;124(July):222–30.

Doyon C, Denis RG, Baraboi ED, Samson P, Lalonde J, Deshaies Y, et al. Effects of rimonabant (SR141716) on fasting-induced hypothalamic-pituitary- adrenal axis and neuronal activation in lean and obese Zucker rats. Diabetes. 2006;55(12):3403–10.

Bermúdez-Siva FJ, Serrano A, Diaz-Molina FJ, Sánchez Vera I, Juan-Pico P, Nadal A, et al. Activation of cannabinoid CB1receptors induces glucose intolerance in rats. Eur J Pharmacol. 2006;531(1–3):282–4.

Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: Central and peripheral actions of leptin. Metabolism. 2015;64(1):35–46.

Tucci S a, Rogers EK, Korbonits M, Kirkham TC. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br J Pharmacol. 2004;143(5):520–3.

Alen F, Crespo I, Ramírez-López MT, Jagerovic N, Goya P, de Fonseca FR, et al. Ghrelin-Induced Orexigenic Effect in Rats Depends on the Metabolic Status and Is Counteracted by Peripheral CB1 Receptor Antagonism. PLoS One. 2013;8(4).

Jbilo O, Ravinet-Trillou C, Arnone M, Buisson I, Bribes E, Péleraux A, et al. The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J. 2005;19(11):1567–9.

Galgglje S, Mary S, Marchand J, Dussossoy D, Carrikre D, Camyon P, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Biochemestry. 1995;61:54–61.

Jourdan T, Djaouti L, Demizieux L, Gresti J, Vergès B, Degrace P. CB1 antagonism exerts specific molecular effects on visceral and subcutaneous fat and reverses liver steatosis in diet-induced obese mice. Diabetes. 2010;59(4):926–34.

Mendez-Sanchez N, Zamora-Valdes D, Pichardo-Bahena R, Barredo-Prieto B, Ponciano-Rodriguez G, Bermejo-Martínez L, et al. Endocannabinoid receptor CB2 in nonalcoholic fatty liver disease. Liver Int. 2007;27(2):215–9.

Jeong W il, Osei-Hyiaman D, Park O, Liu J, Bátkai S, Mukhopadhyay P, et al. Paracrine Activation of Hepatic CB1 Receptors by Stellate Cell-Derived Endocannabinoids Mediates Alcoholic Fatty Liver. Cell Metab. 2008;7(3):227–35.

Siegmund S V., Uchinami H, Osawa Y, Brenner DA, Schwabe RF. Anandamide induces necrosis in primary hepatic stellate cells. Hepatology. 2005;41(5):1085–95.

Teixeira-Clerc F, Belot MP, Manin S, Deveaux V, Cadoudal T, Chobert MN, et al. Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration. Hepatology. 2010;52(3):1046–59.

Wade M, Li Y-C, M. Wahl G. Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. Nat Rev Cancer. 2013;13(2):83–96.

Mallat a, Lotersztajn S. Endocannabinoids and liver disease. I. Endocannabinoids and their receptors in the liver. Am J Physiol Gastrointest Liver Physiol. 2008;294(November 2007):G9–12.

Ashton JC, Dowie MJ, Glass M. The Endocannabinoid System and Human Brain Functions: Insight From Memory, Motor, and Mood Pathologies. In: The Endocannabinoid System [Internet]. 20017. p. 115–86. Available from: https://www.sciencedirect.com/science/article/pii/B9780128096666000058

Bensaid M, Esclangon A, Maffrand JP, Fur GLE. The Cannabinoid CB 1 Receptor Antagonist SR141716 Increases Acrp30 mRNA Expression in Adipose Tissue of Obese fa / fa Rats and in Cultured Adipocyte Cells. Mol Pharmacol. 2003;63(4):908–14.

Nam DH, Lee MH, Kim JE, Song HK, Kang YS, Lee JE, et al. Blockade of Cannabinoid Receptor 1 Improves Insulin Resistance, Lipid Metabolism, and Diabetic Nephropathy in db/db Mice. Endocrinology [Internet]. 2012;153(3):1387–96. Available from: http://press.endocrine.org/doi/abs/10.1210/en.2011-1423

Protein-c REB, Biddinger SB, Almind K, Miyazaki M, Kokkotou E, Ntambi JM, et al. Effects of Diet and Genetic Background on Sterol. Diabetes. 2005;54(May).

Migliarini B, Carnevali O. Molecular and Cellular Endocrinology A novel role for the endocannabinoid system during zebrafish development. Mol Cell Endocrinol. 2009;299:172–7.

Perttilä J, Laakso TS, Suortti T, Arola J, Hultcrantz R. Splanchnic Balance of Free Fatty Acids, Endocannabinoids, and Lipids in Subjects With Nonalcoholic Fatty Liver Disease. 2010;1961–71.

Katayama K, Ueda N, Kurahashi Y, Suzuki H, Yamamoto S, Kato I. Distribution of anandamide amidohydrolase in rat tissues with special reference to small intestine. Biochim Biophys Acta 1347. 1997;212–8.

Demizieux L, Piscitelli F, Troy-fioramonti S, Iannotti FA, Borrino S, Gresti J, et al. Early low-fat diet enriched with linolenic acid reduces liver endocannabinoid tone and improves late glycemic control after a high-fat diet challenge in mice. Diabetes. 2016;65(7):1–41.

Liu J, Cinar R, Xiong K, Godlewski G, Jourdan T, Lin Y, et al. Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase. Proc Natl Acad Sci. 2013;110(47):18832–7.

Blankman JL, Simon GM, Cravatt BF. A Comprehensive Profile of Brain Enzymes that Hydrolyze the Endocannabinoid. Chem Biol. 2007;14(12):1347–56.

Shi D, Yu X, Jia M, Zhang Y, Yao J, Hu X, et al. Inhibiting CB1 receptors improves lipogenesis in an in vitro non-alcoholic fatty liver disease model. Lipids Health Dis. 2014;13(173):1–7.

Wu HM, Yang YM, Kim SG. Rimonabant, a Cannabinoid Receptor Type 1 Inverse Agonist, Inhibits Hepatocyte Lipogenesis by Activating Liver Kinase B1 and AMP-Activated Protein Kinase Axis Downstream of Gαi/o Inhibition. Mol Pharmacol. 2011;80(5):859–69.

Lee J, Hong S, Eun S, Rhee E, Park C, Oh K, et al. Molecular and Cellular Endocrinology AMP-activated protein kinase suppresses the expression of LXR / SREBP-1 signaling-induced ANGPTL8 in HepG2 cells. Mol Cell Endocrinol [Internet]. 2015;414:148–55. Available from: http://dx.doi.org/10.1016/j.mce.2015.07.031

Trebicka J, Racz I, Siegmund S V., Cara E, Granzow M, Schierwagen R, et al. Role of cannabinoid receptors in alcoholic hepatic injury: steatosis and fibrogenesis are increased in CB2 receptor‐deficient mice and decreased in CB1 receptor knockouts. 2011. 31(6):860–70.

Tam J, Drori A, Liu Z, Cinar R, Kashiwaya Y, Reitman ML, et al. Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling. Mol Metab. 2017;6(June):1113–25.

Quarta C, Bellocchio L, Mancini G, Mazza R, Cervino C, Braulke LJ, et al. CB 1 Signaling in Forebrain and Sympathetic Neurons Is a Key Determinant of Endocannabinoid Actions on Energy Balance. Cell Metab. 2010;11(4):273–85.

Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest. 2010;120(8).

Bonner T, Zimmer A, Buckley NE, Mccoy KL, Felder CC, Glass M, et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB 2 receptor. Eur J Pharmacol. 2000;141–9.

Julien B, Grenard P, Clerc FT, Nhieu JTVAN, Li L, Karsak M, et al. Antifibrogenic Role of the Cannabinoid Receptor CB2 in the Liver. 2005;742–55.

Xu X, Liu Y, Huang S, Liu G, Xie C, Zhou J, et al. Overexpression of cannabinoid receptors CB1 and CB2 correlates with improved prognosis of patients with hepatocellular carcinoma. Caner Genet Cytogenet. 2006;171:31–8.

Deveaux V, Cadoudal T, Ichigotani Y, Teixeira-Clerc F, Louvet A, Manin S, et al. Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis. PLoS One [Internet]. 2009;4(6):e5844. Available from: http://dx.plos.org/10.1371/journal.pone.0005844

De Gottardi A, Spahr L, Ravier‐Dall’Antonia F, Hadengue A. Cannabinoid receptor 1 and 2 agonists increase lipid accumulation in hepatocytes. Liver Int. 2010;30(10):1482–9.

Muñoz-Luque J, Ros J, Fernámdez-Varo G, Morales-Ruiz M, Alvarez CE, Friedman SL, et al. Regression of Fibrosis after Chronic Stimulation of Cannabinoid CB2 Receptor in Cirrhotic Rats. J Pharmacol Exp Ther. 2008;324(2):475–83.

Engeli S, Klo N, Berndt J, Fasshauer M, Scho MR, Jordan J, et al. Dysregulation of the Peripheral and Adipose Tissue Endocannabinoid System in Human Abdominal Obesity. Diabetes. 2006;55(November):3053–60.

Rosenstock J, Hollander P, Chevalier S, Iranmanesh A. SERENADE: The Study Evaluating Rimonabant Efficacy in Drug-Naive Diabetic Patients. Diabetes Care. 2008;31(11):2169–76.

Hollander PA, Amod A, Litwak LE, Chaudhari U. Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: The ARPEGGIO trial. Diabetes Care. 2010;33(3):605–7.

Topol EJ, Bousser MG, Fox KA, Creager MA, Despres JP, Easton JD, et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): A randomised, multicentre, placebo-controlled trial. Lancet. 2010;376(9740):517–23.

Hardy G. Nutraceuticals and functional foods: introduction and meaning. Nutrition. 2000;16(7/8):688–97.

Diplock AT, Aggett PJ, Ashwell M, Bornet F, Fern EB, Roberfroid MB. Scientific Concepts of Functional Foods in Europe Consensus Document. Br J Nutr. 1999;81:S1–27.

Santana-Gálvez J, Jacobo-Velázquez DA. Classification of Phenolic Compounds. In: Phenolic Compounds in Food: Characterization and Analysis [Internet]. 1st Editio. Boca Raton: CRC Press; 2018. p. 3–21. Available from: https://www.crcpress.com/Phenolic-Compounds-in-Food-Characterization-and-Analysis/Nollet-Gutierrez-Uribe/p/book/9781498722964

Shahat AA, Hassan RA, Nazif NM, Van Miert S, Pieters L, Hammuda FM, et al. Isolation of Mangiferin from Bombax malabaricum and Structure Revision of Shamimin. Planta Med. 2003;69(11):1068–70.

El-Seedi HR, El-Barbary MA, El-Ghorab DMH, Bohlin L, Borg-Karlson A-K, Göransson U, et al. Recent Insights into the Biosynthesis and Biological Activities of Natural. Curr Med Chem. 2010;17:854–901.

Rocha Ribeiro SM, De Queiroz JH, Lopes Ribeiro de Queiroz ME, Campos FM, Pinheiro Sant’Ana HM. Antioxidant in mango (Mangifera indica L.) pulp. Plant Foods Hum Nutr. 2007;62(1):13–7.

Matkowski A, Kús P, Góralska E, Wo´zniak D. Mangiferin – a Bioactive Xanthonoid , not only from Mango and not just Antioxidant. Mini-Reviews Med Chem. 2013;13:439–55.

Mendoza-Sarmiento G, Rojas-Hernández A, Galano A, Gutiérrez A. A combined experimental–theoretical study of the acid–base behavior of mangiferin: implications for its antioxidant activity. RSC Adv. 2016;6(56):51171–82.

Handayani SI, Tedjo A, Kusmardi. The Immunomodulation of Mangiferin on the Proliferation and Interleukin-2 Receptors Expression of in Vitro Culture of T lymphocytes Derived from Mammary Tumor Bearing Mice. J Appl Biotechnol. 2015;3(2):11–9.

Shi J, Qin B, Zhang Y, Kikuta K. Targeting Nfr2 / ARF signaling is important for mangiferin protecting PC12 cells against hydrogen peroxide-induced apoptosis. Int J Clin Exp Med [Internet]. 2017;10(7):10113–22. Available from: http://www.ijcem.com/files/ijcem0046579.pdf

Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis. 2017;16(1):1–17.

Zhou C, Li G, Li Y, Gong L, Huang Y, Shi Z, et al. Molecular BioSystems A high-throughput metabolomic approach to explore the regulatory effect of mangiferin on hyperlipidemia rats. Mol Biosyst. 2014;11:418–33.

Lim J, Liu Z, Apontes P, Feng D, Pessin JE, Sauve AA, et al. Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One. 2014;9(3).

Guo F, Huang C, Liao X, Wang Y, He Y, Feng R, et al. Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol Nutr Food Res. 2011;55(2):1809–18.

Pardo-Andreu GL, Paim BA, Castilho RF, Velho JA, Delgado R, Vercesi AE, et al. Mangifera indica L. extract (Vimang®) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. Pharmacol Res. 2008;57(5):332–8.

Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol. 2005;97(3):497–501.

Niu Y, Li S, Na L, Feng R, Liu L, Li Y, et al. Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK. PLoS One. 2012;7(1):1–8.

Nakamura MT, Nara TY. Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot Essent Fat Acids. 2003;68(2):145–50.

Huang THW, Yang Q, Harada M, Uberai J, Radford J, Li GQ, et al. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes. Toxicol Appl Pharmacol. 2006;210(1–2):78–85.

Wang C, Jiang JD, Wu W, Kong WJ. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells. Biomed Res Int. 2016;2016.

Li J, Liu M, Yu H, Wang W, Han L, Chen Q, et al. Mangiferin Improves Hepatic Lipid Metabolism Mainly Through Its Metabolite-Norathyriol by Modulating SIRT-1/AMPK/SREBP-1c Signaling. Front Pharmacol. 2018;9(March):1–13.

Wang H, Zhu YY, Wang L, Teng T, Zhou M, Wang SG, et al. Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice. Biomed Pharmacother. 2017;96(July):328–35.

Zhou L, Pan Y, Chonan R, Batey R, Rong X, Yamahara J, et al. Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle. J Pharmacol Exp Ther. 2016;356(1):74–84.

Na L, Zhang Q, Jiang S, Du S, Zhang W, Li Y, et al. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: A double-blind randomized controlled trial. Sci Rep. 2015;5(May):1–9.

Tam J. Role of the Endocannabinoid System in Hepatic Lipogenesis. In: Ntambi JM, editor. Hepatic De Novo Lipogenesis and Regulation of Metabolism [Internet]. Cham: Springer International Publishing; 2016. p. 131–42. Available from: https://doi.org/10.1007/978-3-319-25065-6_6

Fomenko EV, Chi Y. Mangiferin modulation of metabolism and metabolic syndrome. BioFactors. 2016;42(5):492–503.

Enlaces refback

  • No hay ningún enlace refback.