Metabolismo óseo y Osteoporosis: Conceptos y Funciones

Elda Leonor Pacheco-Pantoja, Paloma Salazar-Ciau, Víctor Yáñez-Pérez

Resumen

Nuestros huesos tienen un papel versátil en nuestro organismo: desde proporcionar estructura para el cuerpo, protección para los órganos, hasta servir como reservas de minerales, como calcio y fósforo, que son esenciales para el desarrollo y la estabilidad óseas. El esqueleto alcanza la masa ósea máxima alrededor de los 30 años, después de lo cual comienza a disminuir de manera constante. Aunque la masa ósea máxima está fuertemente determinada por la genética, muchos factores modificables pueden influir en la salud del esqueleto, como la nutrición, el ejercicio, ciertas enfermedades o medicamentos. Durante el trascurso de la vida, los huesos se remodelan, proceso donde los osteoclastos activados pueden reabsorber la superficie mineralizada y reemplazarla con hueso nuevo producido por los osteoblastos. Un deterioro de este delicado equilibrio puede resultar en los cambios fisiopatológicos apreciados en la osteoporosis. Esta revisión tuvo como objetivo abordar conceptos relacionados con el metabolismo óseo, la osteoporosis, así como los tratamientos de elección existentes, centrándose en los bisfofonatos, en particular el ibandronato.

Texto completo:

PDF EPUB HTML

Referencias

Florencio-Silva R, Rodrigues da Silva Sasso G, Sasso-Cerri E, Simoes MJ, Sérgio-Cerri P. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015; 2015: 1-17. https://doi.org/10.1155/2015/421746

Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018; 55(3): 308-327. https://doi.org/10.1177/0004563218759371

AMGEN. New Insights in Bone Biology. Introduction to Bone Biology. Recursos digitales. https://www.bonebiology.amgen.com/bone-health/oteoblasts-osteoclasts.html (consultado en mayo 2021).

Zammit AR, Robitaille A, Piccinin AM, Muniz-Terrera G, Hofer SM. Associations between aging related changes in grip strength and cognitive function in older adults: A systematic review. J Gerontol A Biol Sci Med Sci. 2019; 74(4): 519-27. https://doi.org/10.1093/gerona/gly046

Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017; 17(3): 114-39. https://pubmed.ncbi.nlm.nih.gov/28860414/

Johansson L, Sundh D, Zoulakis M, Rudang R, Darelid A, Brisby H, et al. The prevalence of vertebral fractures is associated with reduced hip bone density and inferior peripheral appendicular volumetric bone density and structure in older women. J Bone Miner Res. 2018; 33(2): 250–60. https://doi.org/10.1002/jbmr.3297

Orthopaedics One. The Orthopaedic knowledge network. 2015. En línea: https://www.orthopaedicsone.com/display/Clerkship/Describe+the+process+of+bone+remodeling.

Marín-Llera JC, Garciadiego-Cázares D, Chimal-Monroy J. Understanding the Cellular and Molecular Mechanisms That Control Early Cell Fate Decisions During Appendicular Skeletogenesis. Front Genet. 2019; 10: 977. https://doi.org/10.3389/fgene.2019.00977

Chan W, Tan Z, To M, Chan D. Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci. 2021; 22(11): 5445. https://doi.org/10.3390/ijms22115445

Kodama J, Kaito T. Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci. 2020; 21(16): 5685. https://doi.org/10.3390/ijms21165685

Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020; 40: 2. https://doi.org/10.1186/s41232-019-0111-3

Boyce BF, Xiu Y, Li J, Xing L, Yao Z. NF-κB-Mediated Regulation of Osteoclastogenesis. Endocrinol Metab. 2015; 30(1): 35–44. https://doi.org/10.3803/enm.2015.30.1.35

Morgan EF, Unnikrisnan GU, Hussein AI. Bone Mechanical Properties in Healthy and Diseased States. Ann Rev Biomed Eng. 2018; 20: 119–43. https://doi.org/10.1146/annurev-bioeng-062117-121139

Barberán M, Campusano C, Trincado P, Oviedo S, Brantes S, Sapunar J, et al. Recomendaciones para el uso correcto de densitometría ósea en la práctica clínica. Consenso de la Sociedad Chilena de Endocrinología y Diabetes. Rev Méd Chile. 2018; 146(12): 1471-80. https://dx.doi.org/10.4067/s0034-98872018001201471

Lu J, Shin Y, Yen MS, Sun SS. Peak bone mass and patterns of change in total bone mineral density and bone mineral contents from childhood into young adulthood. J Clin Densitom. 2016; 19(2): 180–91. https://doi.org/10.1016/j.jocd.2014.08.001

Santos L, Elliott-Sale KJ, Sale C. Exercise and bone health across the lifespan. Biogerontology. 2017; 18(6): 931–46. https://dx.doi.org/10.1007%2Fs10522-017-9732-6

Li K, Wang XF, Li DY, Chen YC, Zhao LJ, Liu XG, et al. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging. 2018; 13: 2443–52. https://dx.doi.org/10.2147%2FCIA.S157523

Albergaria BH, Chalem M, Clark P, Messina OD, Pereira R, Vidal LF. Consensus statement: osteoporosis prevention and treatment in Latin America-current structure and future directions. Arch Osteoporos. 2018; 13(1): 90. https://doi.org/10.1007/s11657-018-0505-x

NIH Osteoporosis and Related Bone Diseases National Resource Center. Bone Mass Measurement: What the Numbers Mean. 2018. En línea: https://www.bones.nih.gov/health-info/bone/bone-health/bone-mass-measure.

Secretaría de Gobernación. Proyecto de Norma Oficial Mexicana PROY-NOM-049-SSA2-2017, Para la prevención, detección, diagnóstico, tratamiento, control y vigilancia epidemiológica de la osteoporosis. Diario Oficial de La Federación. 2017. http://www.dof.gob.mx/nota_detalle.php?codigo=5496348&fecha=06/09/2017#:~:text=PROYECTO%20de%20Norma%20Oficial%20Mexicana,vigilancia%20epidemiol%C3%B3gica%20de%20la%20osteoporosis.

Kanis JA, Harvey NC, Cooper C, Johansson H, Odén A, McCloskey EV, et al. A systematic review of intervention thresholds based on FRAX: A report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos. 2016; 11(1): 25. https://doi.org/10.1007/s11657-016-0278-z

Kanis JA, Cooper C, Rizzoli R, Reginster JY, et al. (2019). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019; 30(1): 3–44. https://doi.org/10.1007/s00198-018-4704-5

Odén A, McCloskey EV, Kanis JA, Harvey NC, Johansson H. Burden of high fracture probability worldwide: secular increases 2010-2040. Osteoporos Int. 2015;26(9): 2243–8. https://doi.org/10.1007/s00198-015-3154-6

Aziziyeh R, Amin M, Habib M, Garcia-Perlaza J, Szafranski K, McTavish RK, et al. The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina. J Med Econ. 2019; 22(7): 638-44, https://doi.org/10.1080/13696998.2019.1590843

Clark P, Ramírez-Pérez E, Reyes-López A. Umbrales de evaluación e intervención para la detección de casos en riesgo de osteoporosis y fracturas por fragilidad con FRAX en población mexicana para el primer nivel de salud. Gac Med Mex. 2016; 152(Suppl: 2): 22–31. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=68742

Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G. Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int. 2017; 28(5): 1531-42. https://doi.org/10.1007/s00198-017-3909-3

Tserotas K, Blümel JE. (2019) Menopause research in Latin America. Climacteric. 2019; 22(1): 17-21, https://doi.org/10.1080/13697137.2018.1540565

Nuti R, Brandi ML, Checchia G, Di Munno O, Dominguez L, Falaschi P, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019; 14(1): 85-102, https://doi.org/10.1007/s11739-018-1874-2

Mendoza Romo MA, Escalante Pulido JM, Martínez Zúñiga R, Ramírez Arriola MC. Osteoporosis en mexicanas mayores de 40 años. Determinación por densitometría periférica. Rev Med IMSS. 2003; 41(3): 193–202. https://www.medigraphic.com/pdfs/imss/im-2003/im033b.pdf

Rosales-Aujang E, Muñoz-Enciso JM, Arias-Ulloa R. Prevalencia de osteopenia y osteoporosis en mujeres posmenopáusicas y su relación con factores de riesgo. Ginecol Obstet Mex. 2014; 82(4): 223-28. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=48760

Cooper C, Ferrari S. IOF Compendium of Osteoporosis. 2019. En línea: https://bit.ly/3pygUGo

Cauley JA. Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res. 2011; 469(7): 1891–9. https://doi.org/10.1007/s11999-011-1863-5

Jin YZ, Lee JH, Xu B, Cho M. Effect of medications on prevention of secondary osteoporotic vertebral compression fracture, non-vertebral fracture, and discontinuation due to adverse events: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2019; 20: 399, https://doi.org/10.1186/s12891-019-2769-8

Okamoto H, Shibazaki N, Yoshimura T, Uzawa T, Sugimoto T. Association between elcatonin use and cancer risk in Japan: A follow-up study after a randomized, double-blind, placebo-controlled study of once-weekly elcatonin in primary postmenopausal osteoporosis. Osteoporos Sarcopenia. 2020; 6(1): 15–19, https://doi.org/10.1016/j.afos.2020.02.001

Henriksen K, Byrjalsen I, Andersen JR, Bihlet AR, Russo LA, Alexandersen P, et al. A randomized, double-blind, multicenter, placebo-controlled study to evaluate the efficacy and safety of oral salmon calcitonin in the treatment of osteoporosis in postmenopausal women taking calcium and vitamin D. Bone. 2016; 91: 122–9. https://doi.org/10.1016/j.bone.2016.07.019

Wells G, Chernoff J, Gilligan JP, Krause DS. Does salmon calcitonin cause cancer? A review and meta-analysis. Osteoporos Int. 2016; 27(1): 13–9. https://doi.org/10.1007/s00198-015-3339-z

García-Hernández P, Carranza-Lira S, Motta-Martínez E. Apego al ibandronato mensual en mujeres mexicanas y chilenas con osteoporosis, con o sin una estrategia de bio-retroalimentación. Ginecol Obstet Mex. 2010; 78(6): 322–8. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=27254

Liang S, Hu S, Guo H, Dong L, Liu G, Liu Y. Ibandronate sodium and zoledronate sodium in the treatment of senile osteoporosis: efficacy, impact on quality of life and cost-effectiveness analysis. Am J Transl Res. 2021; 13(3): 1764-71, http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8014411/

Qayoom I, Raina DB, Širka A, Tarasevičius Š, Tägil M, Kumar A, et al. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res. 2018; 7(10): 548–60. https://doi.org/10.1302/2046-3758.710.BJR-2018-0015.R2

National Center for Biotechnology Information. PubChem Database. https://pubchem.ncbi.nlm.nih.gov/compound/(accessed on May, 2020).

Cremers S, Drake MT, Ebetino FH, Bilezikian JP, Russell R. (2019). Pharmacology of bisphosphonates. Brit J Clin Pharmacol. 2019; 85(6): 1052–62, https://doi.org/10.1111/bcp.13867

Qiu YQ. KEGG Pathway Database. In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H. (Eds.), Encyclopedia of Systems Biology (pp. 1068–1069). 2013. Springer New York.

Roy M, Roux S. Rab GTPases in Osteoclastic Bone Resorption and Autophagy. Int J Mol Sci. 2020; 21(20): 7655. https://doi.org/10.3390/ijms21207655

Huang KC, Cheng CC, Chuang PY, Yang TY. The effects of zoledronate on the survival and function of human osteoblast-like cells. BMC Musculoskelet Disord. 2015; 16(355): 1–7. https://doi.org/10.1186/s12891-015-0818-5

Sosa Henríquez M, Gómez de Tejada Romero MJ. El correcto cumplimiento del tratamiento para la osteoporosis: aún nos queda mucho por hacer. Rev Osteoporos Metab Miner. 2016; 8(1): 3–4. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1889-836X2016000100001

Yao L, Wang H, Dong W, Liu Z, Mao H. Efficacy and safety of bisphosphonates in management of low bone density in inflammatory bowel disease: A meta-analysis. Medicine. 2017; 96(3): e5861-7. https://doi.org/10.1097/md.0000000000005861

Center for Drug Evaluation and Research. En línea: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/021455Orig1s007.pdf

Enlaces refback

  • No hay ningún enlace refback.