Papel de Par-4 en tumores de cáncer de mama en etapas tardíos y recurrentes

Pablo Zapata-Benavides, María Cristina Rodríguez-Padilla, Norma Cesilia Arellano-Rodríguez

Resumen

Introducción. Las muertes en los pacientes con cáncer de mama ocurren principalmente por la recurrencia y metástasis y no por el tumor primario, la agresividad del tumor se asocia al estatus hormonal, tumores receptor estrógeno negativo o triple negativo son neoplasias de mal pronóstico que tienen la capacidad de inducir metástasis o recurrencia la baja expresión de Par-4 se asocia a un mal pronóstico, por esa razón analizamos la participación de Par-4 en la recurrencia tumoral. Área cubierta. Se realizo una búsqueda de artículos relacionades con cáncer de mama, recurrencia y Par-4 en el PubMed y en otros bancos de datos, con la finalidad de comprender la relación de Par-4 como gen supresor de tumor con el proceso carcinogénico y recurrencia de cáncer de mama. Opinión experta. La baja expresión Par-4 está asociado en tumores receptor de estrógeno negativo o con alto grado de transformación, la expresión de par-4 disminuye o es bloqueada en las células remantes después de la quimioterapia y durante el proceso de transición epitelial mesenquimal (EMT) en la recurrencia del tumor, observándose que ar-4 es necesaria y esencial para la recurrencia del cáncer de mama. El entendimiento de la biología del Par-4 en el cáncer de mama abre la posibilidad de ser empleado como una estrategia terapéutica para que coadyuven a la eliminación destrucción de los tumores resistentes o recurrentes de cáncer de mama.

Texto completo:

PDF EPUB HTML

Referencias

Giaquinto AN, Miller KD, Tossas KY, Winn RA, Jemal A, Siegel RL. Cancer statistics for African American/Black people 2022. CA Cancer J Clin. 2022 Feb;72(3):202–29. http://dx.doi.org/10.3322/caac.21718

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7–33. http://dx.doi.org/10.3322/caac.21708

Alcaide-Lucena M, Rodríguez-González CJ, de Reyes-Lartategui S, Gallart-Aragón R, Sánchez-Barrón MT, García-Rubio J, et al. Molecular classification of breast cancer. Treatment and prognosis implications. Cir Andal. 2021 May;32(2):155–9. doi: 10.37351/2021322.9

Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A. Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond. Seminars in cancer biology. 2021 Jul; 72: 123–135. https://doi.org/10.1016/j.semcancer.2020.02.016

Sakach E, O´Regan R, Meisel J, Li X. Molecular Classification of Triple Negative Breast Cancer and the Emergence of Targeted Therapies. Clinical breast cancer. 2021 Sep;21(6): 509–520. https://doi.org/10.1016/j.clbc.2021.09.003

DeSantis CE, Ma J, Goding-Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state: Breast Cancer Statistics, 2017. CA Cancer J Clin. 2017 Oct;67(6):439–48. http://dx.doi.org/10.3322/caac.21412

Scully OJ, Bay BH, Yip G, Yu Y. Breast cancer metastasis. Cancer genomics & proteomics. 2012 Oct; 9(5): 311-320. https://cgp.iiarjournals.org/content/9/5/311.long

He XM, Zou DH. The association of young age with local recurrence in women with early-stage breast cancer after breast-conserving therapy: a meta-analysis. Sci Rep. 2017 Sep;7(1):11058. http://dx.doi.org/10.1038/s41598-017-10729-9

Fragomeni SM, Sciallis A, Jeruss JS. Molecular subtypes and local-regional control of breast cancer. Surgical Oncology Clinics. 2018 Jan; 27(1): 95-120. doi: 10.1016/j.soc.2017.08.005

Jin L, Han B, Siegel E, Cui Y, Giuliano A, Cui X. Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer biology & therapy. 2018 Mar; 19(10): 858-868. doi: 10.1080/15384047.2018.1456599

Belkacemi Y, Hanna NE, Besnard C, Majdoul S, Gligorov J. Local and regional breast cancer recurrences: Salvage therapy options in the new era of molecular subtypes. Frontiers in oncology. 2018 Apr; 8: 112. doi: 10.3389/fonc.2018.00112

O'Reilly D, Al Sendi M, Kelly CM. Overview of recent advances in metastatic triple negative breast cancer. World Journal of Clinical Oncology. 2021 Mar; 12(3): 164. doi: 10.5306/wjco.v12.i3.164

Lee K, Kruper L, Dieli-Conwright CM, Mortimer JE. The impact of obesity on breast cancer diagnosis and treatment. Curr Oncol Rep. 2019 Mar;21(5):41. http://dx.doi.org/10.1007/s11912-019-0787-1

Ecker BL, Lee JY, Sterner CJ, Solomon AC, Pant DK, Shen, F, et al. Impact of obesity on breast cancer recurrence and minimal residual disease. Breast Cancer Research. 2019 Mar; 21(1): 1-16. doi: 10.1186/s13058-018-1087-7

Kothari C, Diorio C, Durocher F. The Importance of Breast Adipose Tissue in Breast Cancer. International journal of molecular sciences. 2020 Aug; 21(16): 5760. https://doi.org/10.3390/ijms21165760

Jiralerspong S, Goodwin PJ. Obesity and Breast Cancer Prognosis: Evidence, Challenges, and Opportunities. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2016 Dec; 34(35): 4203–4216. doi: 10.1200/JCO.2016.68.4480

Araujo N, Sledziona J, Noothi SK, Burikhanov R, Hebbar N, Ganguly S, et al. Tumor Suppressor Par-4 Regulates Complement Factor C3 and Obesity. Frontiers in oncology. 2022 Mar; 12: 860446. https://doi.org/10.3389/fonc.2022.860446

Mabe NW, Fox DB, Lupo R, Decker AE, Phelps SN, Thompson JW, et al. Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J Clin Invest. 2018 Aug;128(10):4413–28. http://dx.doi.org/10.1172/JCI99481

Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA, et al. Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ. 1994 Apr;5(4):457–66. https://pubmed.ncbi.nlm.nih.gov/8043520/

Cheratta AR, Thayyullathil F, Pallichankandy S, Subburayan K, Alakkal A, Galadari S. Prostate apoptosis response-4 and tumor suppression: it’s not just about apoptosis anymore. Cell Death Dis. 2021 Jan;12(1):47. http://dx.doi.org/10.1038/s41419-020-03292-1

Tiruttani Subhramanyam UK, Kubicek J, Eidhoff UB, Labahn J. Structural basis for the regulatory interactions of proapoptotic Par-4. Cell Death & Differentiation. 2017 Jun; 24(9): 1540-1547. https://doi.org/10.1038/cdd.2017.76

Ghosalkar J, Sonawane V, Pisal T, Achrekar S, Pujari R, Chugh A. Prostate Apoptosis Response-4 (Par-4): A Novel Target in Pyronaridine-Induced Apoptosis in Glioblastoma (GBM) Cells. Cancers. 2022 Jun; 14(13): 3198. https://doi.org/10.3390/cancers14133198

Zhang J, Sun A, Dong Y, Wei D. Recombinant production and characterization of SAC, the core domain of par-4, by SUMO fusion system. Appl Biochem Biotechnol. 2018 Oct;184(4):1155–67. http://dx.doi.org/10.1007/s12010-017-2599-9

Santiago SA, Pablo ZB, Edgar MG, Karina CA, Mariela AR, Cristina RP. Truncated WT1 Protein Isoform Expression Is Increased in MCF-7 Cells with Long-Term Estrogen Depletion. Int J Breast Cancer. 2021 Nov;2021:6282514. doi: 10.1155/2021/6282514.

Cheema SK, Mishra SK, Rangnekar VM, Tari A M, Kumar R, Lopez-Berestein G. Par-4 transcriptionally regulates Bcl-2 through a WT1-binding site on the bcl-2 promoter. The Journal of biological chemistry. 2003 May;278(22): 19995–20005. https://doi.org/10.1074/jbc.M205865200

Satherley LK, Sun PH, Ji KE, Mason M, Hargest R, Jiang WG, et al. Prostate Apoptosis Response-4 (PAR4) Suppresses Growth and Invasion of Breast Cancer Cells and Is Positively Associated with Patient Survival. Anticancer research. 2016 Mar; 36(3): 1227–1235. https://ar.iiarjournals.org/content/36/3/1227

de Bessa Garcia SA, Pavanelli AC, Cruz E Melo N, Nagai MA. Prostate apoptosis response 4 (PAR4) expression modulates WNT signaling pathways in MCF7 breast cancer cells: A possible mechanism underlying PAR4-mediated docetaxel chemosensitivity. International journal of molecular medicine. 2017 Feb; 39(4): 809–818. https://doi.org/10.3892/ijmm.2017.2900

Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell. 2009 Jul;138(2):377–88. http://dx.doi.org/10.1016/j.cell.2009.05.022

Shrestha-Bhattarai T, Rangnekar VM. Cancer-selective apoptotic effects of extracellular and intracellular Par-4. Oncogene. 2010 May;29(27):3873–80. http://dx.doi.org/10.1038/onc.2010.141

Guo H, Treude F, Krämer OH, Lüscher B, Hartkamp J. PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1. Sci Rep. 2019 Jun;9(1):8755. http://dx.doi.org/10.1038/s41598-019-45209-9

Yao X, Liu H, Zhang X, Zhang L, Li X, Wang C, et al. Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PLoS One. 2015 May;10(5):e0125634. http://dx.doi.org/10.1371/journal.pone.0125634

Cohen M, Ribaux P, Epiney M, Irion O. Role of prostate apoptosis response 4 in translocation of GRP78 from the endoplasmic reticulum to the cell surface of trophoblastic cells. PLoS One. 2013 Nov;8(11):e80231. http://dx.doi.org/10.1371/journal.pone.0080231

Burikhanov R, Shrestha-Bhattarai T, Hebbar N, Qiu S, Zhao Y, Zambetti GP, et al. Paracrine apoptotic effect of p53 mediated by tumor suppressor par-4. Cell Rep. 2014 Jan;6(2):271–7. http://dx.doi.org/10.1016/j.celrep.2013.12.020

Nagai MA, Gerhard R, Salaorni S, Fregnani JHTG, Nonogaki S, Netto MM, et al. Down-regulation of the candidate tumor suppressor gene PAR-4 is associated with poor prognosis in breast cancer. Int J Oncol. 2010 Jul;37(1):41–9. http://dx.doi.org/10.3892/ijo_00000651

Ahmed MM, Sheldon D, Fruitwala MA, Venkatasubbarao K, Lee EY, Gupta S, et al. Downregulation of PAR-4, a pro-apoptotic gene, in pancreatic tumors harboring K-ras mutation. Int J Cancer. 2008 Jan;122(1):63–70. http://dx.doi.org/10.1002/ijc.23019

Cook J, Krishnan S, Ananth S, Sells SF, Shi Y, Walther MM, et al. Decreased expression of the pro-apoptotic protein Par-4 in renal cell carcinoma. Oncogene. 1999 Feb;18(5):1205–8. http://dx.doi.org/10.1038/sj.onc.1202416

Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget. 2017 Dec; 8(3): 4008–4042. https://doi.org/10.18632/oncotarget.14021

Alvarez JV, Pan T-C, Ruth J, Feng Y, Zhou A, Pant D, et al. Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell. 2013 Jun;24(1):30–44. http://dx.doi.org/10.1016/j.ccr.2013.05.007

Méndez-López LF, Zapata-Benavides P, Zavala-Pompa A, Aguado-Barrera ME, Pacheco-Calleros J, Rodríguez-Padilla C, et al. Immunohistochemical analysis of prostate apoptosis response-4 (Par-4) in Mexican women with breast cancer: a preliminary study. Arch Med Res. 2010 May;41(4):261–8. http://dx.doi.org/10.1016/j.arcmed.2010.05.005

Zapata-Benavides P, Méndez-Vázquez JL, González-Rocha TR, Zamora-Avila DE, Franco-Molina MA, Garza-Garza R, et al. Expression of prostate apoptosis response (Par-4) is associated with progesterone receptor in breast cancer. Arch Med Res. 2009 Oct;40(7):595–9. http://dx.doi.org/10.1016/j.arcmed.2009.08.007

Goswami A, Burikhanov R, de Thonel A, Fujita N, Goswami M, Zhao Y, et al. Binding and phosphorylation of par-4 by akt is essential for cancer cell survival. Mol Cell. 2005 Oct;20(1):33–44. http://dx.doi.org/10.1016/j.molcel.2005.08.016

Du B, Shim JS. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules (Basel, Switzerland). 2016 Jul;21(7):965. https://doi.org/10.3390/molecules21070965

Baulida J. Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Molecular oncology. 2017 May;11(7): 847–859. https://doi.org/10.1002/1878-0261.12080

Georgakopoulos Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Frontiers in oncology. 2020 Apr; 10: 499. https://doi.org/10.3389/fonc.2020.00499

Oghbaei F, Zarezadeh R, Jafari-Gharabaghlou D, Ranjbar M, Nouri M, Fattahi A, et al. Epithelial-mesenchymal transition process during embryo implantation. Cell and tissue research. 2022 Jan; 388(1): 1–17. https://doi.org/10.1007/s00441-021-03574-w

Francesco EM, Maggiolini M, Musti AM. Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. International journal of molecular sciences. 2018 Jul;19(7): 2011. https://doi.org/10.3390/ijms19072011

Xu X, Zhang L, He X, Zhang P, Sun C, Xu X, et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, EMT and apoptosis. Biochem Biophys Res Commun. 2018 Jul;502(1):160–5. http://dx.doi.org/10.1016/j.bbrc.2018.05.139

Yoshimatsu Y, Wakabayashi I, Kimuro S, Takahashi N, Takahashi K, Kobayashi M, et al. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer science. 2020 May;111(7): 2385–2399. https://doi.org/10.1111/cas.14455

Takatani-Nakase T, Matsui C, Hosotani M, Omura M, Takahashi K, Nakase I. Hypoxia enhances motility and EMT through the Na+/H+ exchanger NHE-1 in MDA-MB-231 breast cancer cells. Exp Cell Res. 2022 Mar;412(1):113006. http://dx.doi.org/10.1016/j.yexcr.2021.113006

Xu Y, Qin L, Sun T, Wu H, He T, Yang Z, et al. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene. 2017 Feb;36(8):1157–66. http://dx.doi.org/10.1038/onc.2016.286

Mohammadi-Ghahhari N, Sznurkowska MK, Hulo N, Bernasconi L, Aceto N, Picard D. Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis. Nat Commun. 2022 Apr;13(1):2104. http://dx.doi.org/10.1038/s41467-022-29723-5

Karamanou K, Franchi M, Vynios D, Brézillon S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Seminars in cancer biology. 2020 May; 62: 125–133. https://doi.org/10.1016/j.semcancer.2019.08.003

Na TY, Schecterson L, Mendonsa AM, Gumbiner BM. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A. 2020 Mar;117(11):5931–7. http://dx.doi.org/10.1073/pnas.1918167117

Naderi R, Aziz SGG, Haghigi Asl AS. Evaluating the effect of Alantolactone on the expression of N-cadherin and Vimentin genes effective in epithelial-mesenchymal transition (EMT) in breast cancer cell line (MDA-MB-231). Annals of Medicine and Surgery. 2022 Jan; 73: 103240. https://doi.org/10.1016/j.amsu.2021.103240

Katoch A, Suklabaidya S, Chakraborty S, Nayak D, Rasool RU, Sharma D, et al. Dual role of Par-4 in abrogation of EMT and switching on Mesenchymal to Epithelial Transition (MET) in metastatic pancreatic cancer cells. Molecular carcinogenesis. 2018 Apr;57(9):1102–1115. https://doi.org/10.1002/mc.22828

Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, et al. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together withpaclitaxel. Theranostics. 2021 Jan;11(5):2442–59. http://dx.doi.org/10.7150/thno.46460

Wang J, Li Y, Ma F, Zhou H, Ding R, Lu B, et al. Inhibitory effect of Par-4 combined with cisplatin on human Wilms’ tumor cells. Tumour Biol. 2017 Jul;39(7):1010428317716689. DOI: 10.1177/1010428317716689

Arellano-Rodríguez NC, Alvarez-Quezada OA, Benavides PZ, Vargas-Alanís G, Franco-Molina M, Zamora-Ávila D, et al. Curcumin Sensitizes 4T1 Murine Breast Cancer Cells to Cisplatin Through PAR4 Secretion. In vivo (Athens, Greece). 2022 Nov;36(6): 2767–2773. https://doi.org/10.21873/invivo.13013

Tan J, You Y, Xu T, Yu P, Wu D, Deng H, et al. Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT. Toxicol Lett. 2014 Jan;224(1):7–15. http://dx.doi.org/10.1016/j.toxlet.2013.10.008

Thayyullathil F, Pallichankandy S, Rahman A, Kizhakkayil J, Chathoth S, Patel M, et al. Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells. Journal of molecular signaling. 2013 Feb; 8(1): 2. DOI: 10.1186/1750-2187-8-2

Chaudhry P, Singh M, Parent S, Asselin E. Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation. Mol Cell Biol. 2012 Jan;32(4):826–39. http://dx.doi.org/10.1128/MCB.06321-11

Clark AM, Ponniah K, Warden MS, Raitt EM, Smith BG, Pascal SM. Tetramer formation by the caspase-activated fragment of the Par-4 tumor suppressor. The FEBS journal. 2019 Jun; 286(20): 4060–4073. https://doi.org/10.1111/febs.14955

Burikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, et al. Chloroquine-inducible par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep. 2017 Jan;18(2):508–19. http://dx.doi.org/10.1016/j.celrep.2016.12.051

Damrauer JS, Phelps SN, Amuchastegui K, Lupo R, Mabe NW, Walens A, et al. Foxo-dependent Par-4 Upregulation Prevents Long-term Survival of Residual Cells Following PI3K–Akt InhibitionFoxo-Driven Par-4 Expression Limits Residual Cell Survival. Molecular Cancer Research. 2018 Apr;16(4): 599-609. DOI: 10.1158/1541-7786.MCR-17-0492

Ahmad SM, Nayak D, Mir KB, Faheem MM, Nawaz S, Yadav G, et al. Par-4 activation restrains EMT-induced chemoresistance in PDAC by attenuating MDM-2. Pancreatology. 2020 Oct;20(8): 1698-1710. DOI: 10.1016/j.pan.2020.09.021

McKenna MK, Noothi SK, Alhakeem SS, Oben KZ, Greene JT, Mani R et al. Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia. Blood. 2018 Jun; 131(26): 2943–2954. https://doi.org/10.1182/blood-2017-10-813931

Santos RVC, de Sena WLB, Dos Santos FA, da Silva Filho AF, da Rocha Pitta MG, da Rocha Pitta MG. Potential Therapeutic Agents Against Par-4 Target for Cancer Treatment: Where Are We Going?. Current drug targets. 2019; 20(6): 635–654. https://doi.org/10.2174/1389450120666181126122440

Zhang J, Dong W, Ren Y, Wei D. SAC-TRAIL, a novel anticancer fusion protein: expression, purification, and functional characterization. Applied microbiology and biotechnology. 2022 Feb; 106(4): 1511–1520. https://doi.org/10.1007/s00253-022-11807-3

Kim K, Araujo P, Hebbar N, Zhou Z, Zheng X, Zheng Fet al. Development of a novel prostate apoptosis response-4 (Par-4) protein entity with an extended duration of action for therapeutic treatment of cancer. Protein engineering, design & selection : PEDS. 2019 Nov; 32(3): 159–166. https://doi.org/10.1093/protein/gzz034

Chen YT, Tseng TT, Tsai HP, Huang MY. Arylquin 1 (Potent Par-4 Secretagogue) Inhibits Tumor Progression and Induces Apoptosis in Colon Cancer Cells. International journal of molecular sciences. 2022 May;23(10): 5645. https://doi.org/10.3390/ijms23105645

Enlaces refback

  • No hay ningún enlace refback.